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PREFACE 

The author was employed at the Air Force Flight Test Center (AFFTC), Edwards AFB, 
California, from 1968 through 1993 as an aircraft performance flight test engineer. This 
document began, but was not finished, prior to his retirement in 1993. He endeavored to 
complete the document on his own and this text is the final result of that.  He received a lot of 
help from the reviewers, which he mentions below they each made suggestions that 
improved the text vastly.  

The intent of this text is that it should provide a highly useful reference source for aircraft 
performance flight test engineers. It certainly should not be the only source of information. 
The bibliography contains just a few of the sources that the author has found most useful.  
Much of the material covered in this handbook can be found in slightly different forms in the 
bibliographies listed in the Bibliography section. Even though the Flight Test Engineering 
Handbook (listed in the Bibliography Section) was originally written in the 1950s and 
updated slightly in the 1960s, it still contains much useful information. The author utilized 
Everett Dunlap’s Theory of the Measurement and Standardization of In-Flight Performance 
of Aircraft extensively as a reference source during his years at Edwards AFB. Also, the 
USAF Test Pilot School’s (TPS) Aircraft Performance manual was a valuable source, as well 
as the knowledge the author gained while a student at the USAF TPS.  

The emphasis here is on performance testing as conducted at Edwards AFB; therefore, 
low budget or light aircraft testing is not covered extensively. Very little is said about 
instrumentation, except that it is needed and should be as accurate as reasonably possible. 
The thrust discussion is kept to a minimum. A number of other possible topics are discussed 
lightly, if not at all. Items not necessarily complete are: 

1. airspeed calibration in ground effect, 

2. test planning, 

3. test conduct, 

4. how to fly the maneuvers, 

5. use of parameter identification, 

6. report writing, and  

7. cg accelerometer system. 

This handbook is pieced together from writing the author has done going back as far as 
1975. Much of it is from individual performance office memos which were written to  
stand-alone; therefore, you will see quite a bit of duplication. The same equation appears in 
several places the author tried to have the major derivation of the equation appear only 
once. For those of you who are familiar with the author’s style, you know he is big on theory 
and equations. Although it appears that there are a lot of intermediate steps in the derivations, 
the extra steps are appropriate to show where all the constants come from.  
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Early versions of this text had three primary reviewers: Messrs. Mac McElroy, Ron Hart, 
and Frank Brown. Mr. McElroy looked at some early versions of this handbook. Messrs. Hart 
and Brown reviewed both the draft and final versions of this handbook. Mr. Bill Fish 
suggested adding the discussion of the ratio method of standardization and reviewed the 
thrust section. Mr. Allan Webb also reviewed the thrust section. Mr. Alan Lawless of the 
National TPS and Mr. John Hicks from NASA, Dryden Flight Research Center, provided 
significant comments that were implemented into the text. In addition, Mr. Richard Colgren 
of Lockheed-Martin Skunk Works and Captain Timothy Jorris of the AFFTC provided 
excellent suggestions that were incorporated.  

There were many individual engineers at Edwards AFB that the author would like to 
acknowledge in this handbook. Although the list is long, they deserve mentioning. They are: 

1. Mr. Jim Pape (who never found out the author did not know the difference between 
an aileron and an elevator when he first started working at Edwards AFB).  

2. Mr. Willie Allen for teaching the author almost everything he knows about dynamic 
performance and flight path accelerometers. Mr. Allen invented the “cloverleaf” airspeed 
calibration method, which is discussed in this handbook.  

3. Mr. Milton Porter for teaching the author the mathematics that he applied to the 
cloverleaf method in a mathematics class at the USAF TPS.  

4. Mr. Randy Simpson of the Naval Air Test Center (now called the Naval Air Weapons 
Center). The author worked several months with Mr. Simpson on developing dynamic 
performance methods in the early 1970s.  

5. Mr. Dave Richardson, while reviewing a very early version of this text, pointed out 
that the AFFTC and NASA were using dynamic performance methods on the lifting body 
research projects years before those of us in the conventional aircraft business.  

6. Mr. Jim Olhausen of General Dynamics on the YF-16 and F-16A, who in the middle 
1970s taught the author about using inertial navigation systems (INSs) for performance. As a 
result of Mr. Olhausen’s work, the INS became the primary source of flight path acceleration 
data on almost every large project at the AFFTC. 

7. Mr. Al DeAnda for teaching the author about calibrating airspeed. 

8. Mr. Bill Fish for tutoring the author in propulsion (though propulsion is discussed 
lightly in this handbook).  

9. Mr. Bob Lee - The author worked with Mr. Lee for a short period of time in the early 
1970s studying parameter identification.  

10. Messrs. Clen Hendrickson, Lyle Schofield, Jim Cooper, Ken Rawlings, Mac 
McElroy, Ron Hart, Charlie Johnson, Pete Adolph, Don Johnson, Frank Brown and many 
others for helping the author learn about test techniques and other aspects of flight test.  

Finally, the author would like to give sincere thanks to Mr. Frank Brown, his successor at 
Edwards AFB, for all his help in the preparation of this handbook. In addition, Ms. Virginia 
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O’Brien of Computer Sciences Corporation for the technical editing and final format of this 
handbook. 

This will not be the final version of this handbook. The AFFTC would appreciate any 
suggestions for additional material, clarification of existing material, or any technical errors you 
may find. A form to submit proposed changes and/or improvements is included in the back of 
this handbook, or if needed, contact either Frank Brown or the author via e-mail with any 
comments. Following are addresses and e-mail for each of them.  

Frank Brown 
412 TW/TSFT 
Edwards, AFB, CA 93524-6841 
Frank.Brown@edwards.af.mil  
 
Wayne Olson 
3003 NE 3rd Ave, #222 
Camas, WA 98607-2340 
wayneperf@aol.com 
 
This March 2002 revision makes a few grammatical, spelling and formatting corrections. In 

addition, a couple of equation numbers were misplaced. There have been no equation or other 
technical errors discovered so far.  
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1.0 OVERVIEW 

1.1 Introduction 

Aircraft performance flight testing is different things to different people. It involves 
ground tests such as calibrating instruments, weighing the aircraft, and static thrust runs. Taxi 
tests are performed prior to first takeoff. Then, there is the collection of data during all phases 
of flight. The phases of flight include takeoff, acceleration to climb speed, climb, 
acceleration, cruise, deceleration, descent, and landing. During flight, the aircraft will also 
maneuver in sustained, accelerating or decelerating turns. Specialized maneuvers called 
dynamic maneuvers are used to efficiently collect aircraft lift and drag data. Aircraft 
airspeed, altitude, and temperature measurement systems will be calibrated in flight. All data 
collected will be reduced to enable analysis of specific maneuvers such as cruise and to 
verify and update aircraft mathematical models for lift, drag, thrust, and fuel flow. Simulation 
and curve fitting may be utilized during the data analysis process.  

1.2 Primary Instrumentation Parameters 

In a performance evaluation, there can be hundreds of instrumentation measurements.  
However, only a few can be considered primary. We will make a list as follows: 

Total pressure. A measurement of the total pressure (in typical units of pounds per square 
foot) experienced by the aircraft.  For flight test aircraft, this is often from a nose boom. 

Ambient (or static) pressure. An attempt to measure the atmospheric ambient pressure (in 
same units as total pressure). This is subject to errors called position errors. The terminology 
is due to the fact that there is some ‘position’ on the surface of the aircraft where the ambient 
pressure error is zero or minimal. The bad news is that for any given static source location, 
the position error varies with speed, altitude, and attitude. 

Total temperature. A temperature probe is used to measure the total temperature of the 
air.  

From measured total pressure, ambient pressure and total temperature we can calculate 
the true airspeed of the aircraft. True airspeed is the physical speed of the aircraft with 
respect to the moving air mass. From total and ambient pressure then we compute the 
indicated airspeed. Indicated airspeed is a measure of the differential pressure. Differential 
pressure is simply total pressure minus ambient pressure. Since we have position error in the 
ambient pressure, we will apply corrections to ambient pressure to be able to go from 
indicated airspeed to the corrected values for calibrated and true airspeed.    

Aircraft gross weight. This is not a single measurement, but a calculation usually based 
upon a set of fuel tank quantity measurements in flight. The fuel tank quantity weights are 
simply added to a known empty weight of the aircraft. The empty weight will be computed 
for each flight based upon the particular configuration for that flight. The aircraft will also be 
weighed at various times during the program to verify the calculations.   
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Longitudinal flight path acceleration. We will compute the longitudinal acceleration of 
the aircraft parallel to the flight path. The flight path is determined by the true airspeed 
vector. On most aircraft programs, we use inertial navigation system (INS) data to compute 
the longitudinal acceleration. The airspeed-altitude method or GPS are also used. By dividing 
longitudinal acceleration by the acceleration of gravity, we get the longitudinal load factor. 
Then, multiply the longitudinal load factor by the gross weight to obtain the excess thrust. If 
there is one fundamental equation of aircraft performance, it would be the following: 

Drag = Net Thrust – Excess Thrust 

where: 

Drag = the net aerodynamic resistance parallel to the velocity vector. 

Normal acceleration: The acceleration perpendicular to the flight path is the normal 
acceleration. Divide normal  acceleration  by gravity to obtain normal load factor.  Lift is the 
net aerodynamic force perpendicular to the velocity vector. If we ignore the small component 
of thrust perpendicular to the velocity vector, then we get a second fundamental formula. 
However, keep in mind this one is only approximately correct, while the first one is exact.  

Lift = (Normal Load Factor) x Weight 

Thrust. The propulsive force provided by the engine. In this handbook, we will discuss 
only turbine engines. However, most of the equations of motion in this handbook are 
applicable to aircraft with other types of propulsion. Thrust is produced during the process of 
air accelerating through the engine. The air entering the inlet is nearly brought to a stop and 
then accelerated through various turbine stages. The combustion process dramatically 
increases the temperature of the air and the air (plus the fuel) exits the tail pipe at a much 
higher velocity. This change in momentum and a pressure difference between the inlet and 
exit are the primary factors that produce thrust.  Thrust is computed from a variety of 
measured engine and atmospheric parameters. 

1.3 Ground Tests 

Instrumentation calibration. The installation and calibration of all aircraft instruments 
should occur prior to flight. Much of the instrumentation can be checked after it is installed in 
the aircraft. The output of the total and ambient pressure probes can be ground-tested using 
precision pressure monitors. 

Aircraft weight and cg. The aircraft should be weighed with zero fuel and with various 
amounts of fuel to check the numbers provided by the contractor. The center of gravity (cg) 
can be determined in a weight facility where separate scales are available for the main and 
nose gear.  

Static thrust. The installed thrust of the engines can be measured directly on the ground 
on a static thrust stand. The principle of a thrust stand is quite simple. The aircraft sits on a 
pad and is connected by cables to a load cell that measures load (thrust) directly in pounds of 
force. By operating the engine at various throttle settings, a comparison of thrust at zero 
speed over a range of power settings can be made with predictions. 
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Taxi tests. While taxiing on the ground, the aircraft is tested. Taxi means simply to move 
the aircraft under its own power on the ground without achieving flight. The first taxi tests 
would be accomplished in the lowest power setting called idle. The idle taxi tests, combined 
with the static thrust data, will quantify idle thrust at low speeds. Taxi tests at higher throttle 
settings and approaching lift-off speeds will give an early indication of thrust and drag on the 
ground. The final test, prior to first takeoff, will be to rotate the aircraft to lift-off attitude. 

1.4 Flight Maneuvers 

Takeoff tests are performed to determine the distance required to lift-off and to clear an 
obstacle. In USAF testing, the obstacle clearance height is 50 feet, while in civilian testing, 
the height is 35 feet for heavy aircraft and 50 feet for light aircraft. Lift-off is usually defined 
as when lift first becomes greater than weight. For multi-engine aircraft, engine-out testing is 
also performed wherein one engine’s power is reduced to idle to simulate an engine failure 
during takeoff. 

Climb tests are flown to determine time, distance, and fuel used to climb to a cruise 
altitude.  In addition, rate of climb versus altitude is determined. 

Cruise testing is conducted to evaluate aircraft range. The aircraft is flown in stabilized 
flight over a range of speed and altitude conditions in order to determine the best speed and 
altitude to achieve maximum range. However, with modern analysis methods, the optimum 
range conditions are usually determined through analysis of drag and thrust/fuel flow models, 
which are verified and updated using cruise and other data.  

Acceleration tests are conducted during level 1-g flight at fixed throttle settings. These 
tests are used in conjunction with climb tests to determine the optimum climb profiles. They 
are also used to update thrust and fuel flow models for fixed throttle settings over a range of 
altitudes and ambient temperature conditions.  Excess thrust (thrust minus drag) is measured 
versus speed at various altitudes. 

Turning performance is conducted to both determine ability of the aircraft to turn and to 
assist in generating aircraft lift and drag models at higher lift and angle-of-attack values than 
what are obtainable in 1-g flight. 

Deceleration and descent tests are conducted to determine ability of the aircraft to 
decelerate and the fuel used in descent maneuvers. In addition, this data can be used to assist 
in generating aircraft thrust/fuel flow and drag models.  

Landing tests are used to measure the distance to land starting from clearing an obstacle 
(as in the takeoff test). Braking tests performed during the landings or as separate tests, will 
evaluate stopping performance as well as the ability of the brakes to withstand the high 
temperatures associated with maximum performance braking.  

1.5 Data Analysis 

Thrust. Engine thrust is evaluated at fixed throttle settings. For military aircraft, these 
settings are usually designated IDLE, MIL (military) and MAX (maximum). Idle is the 
minimum throttle setting, MIL is the maximum throttle setting without the use of afterburner, 
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and MAX is the Maximum throttle setting with the use of afterburner. Thrust at these fixed 
throttle positions is primarily a function of flight conditions (speed, altitude, and 
temperature). A secondary function is angle of attack (angle between the aircraft body x-axis 
and the airspeed vector). Thrust is not measured directly, but rather computed from flight 
conditions and engine parameter measurements. The engine parameters needed usually 
include pressure, temperature, and rpm (revolutions per minute). Thrust is then computed 
using an engine manufacturer-provided computer program as modified by the airframe 
contractor to include installation effects. This is designated an in-flight thrust deck. A second 
computer program is usually provided a prediction deck, which will predict thrust without 
knowing any engine parameters (just flight conditions and throttle setting). The flight test 
data analyst will compare the in-flight thrust deck data to the prediction deck data. Then, 
analysis will be performed to attempt to ‘model’ this data. 

Fuel flow. Engine fuel flow will be measured, modeled, and plotted versus thrust and as a 
function of flight conditions. Fuel flow data will be obtained both during the fixed throttle 
maneuvers (climb, accel, and turn) and during cruise testing. Fixed throttle refers to a 
specified throttle position like MIL, MAX or IDLE.  

Lift. Lift in the form of a nondimensional lift coefficient will be determined and modeled 
versus angle of attack and Mach number.  

Drag. Drag will be computed from thrust and excess thrust and modeled versus lift in 
nondimensional coefficient form. 
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2.0 AXIS SYSTEMS AND EQUATIONS OF MOTION 

2.1 Flight Path Axis 

The true airspeed vector defines the flight path (or wind) axis. The inertial velocity vector 
defines the inertial flight path axis. In this text, when the singular axis is used, we are usually 
referring to the longitudinal or x component of the wind axis system. The component of 
aerodynamic force parallel to the flight path axis is defined as drag. Lift is the component of 
aerodynamic force perpendicular to the drag (or flight path) axis. The component of aircraft 
acceleration parallel to the flight path is the longitudinal acceleration ( xA ). The longitudinal 
load factor ( xN ) is simply the xA  divided by the acceleration of gravity ( g ). In conventional 
aircraft performance, g  is assumed a constant at the reference gravity and given the value of 
32.174 ft/sec² (foot per second squared). The symbol 0g  will be used to denote the reference 
gravity. The effect of assuming a constant g  is dealt with in the gravity section.  

To derive the equations of motion we could start with the following energy relationship: 

 E KE PE= +   (2.1) 

where: 

E     = total energy (foot-pounds), 
KE  = kinetic energy (foot-pounds), and 
PE  = potential energy (foot-pounds). 

Then, assuming zero wind: 

 2

0
0.5 t

t
WKE Vg
 = ⋅ ⋅ 
 

 (2.2) 

 0tW m g= ⋅  (2.3) 

 tPE W H= ⋅  (2.4) 

where: 

m  = aircraft mass (slugs), [(pounds force)(seconds)2/(foot)], 
tW  = aircraft gross weight (pounds), 

H  = geopotential altitude (feet), and 
tV  = true airspeed (feet/sec). 

Note: It is assumed that tapeline (or geometric) altitude ( h ) and geopotential altitudes 
( H ) are identical. The small difference of these two altitude parameters is discussed in the 
altitude section.  
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Adding the potential and kinetic energy relationships (2.2) and (2.4) and dividing by tW  
yields the following: 

 ( )
2

0
/ 2

t
t

t t

PE KE VE W H gW W
 = + = + ⋅ 

 (2.5) 

The energy per unit weight ( / tE W ) is called energy altitude (or energy height) ( EH ).  

 ( )
2

02
t

E
VH H g= + ⋅  (2.6) 

Taking the derivative with respect to time (and ignoring wind) yields: 

 
0

/ t t
E

V dVdH dt dH dt g dt
    = + ⋅        

 (2.7) 

The derivative of EH  with respect to time is called specific excess power and given the 
symbology of sP . The Cambridge Air and Space Dictionary (Reference 2.1) gives the 
following definition of specific excess power: “Thrust power available to an aircraft in excess 
of that required to fly at a particular constant height and speed, thus being usable for 
climbing, accelerating or turning.” 

Equation 2.7 then becomes: 

 ( )
0

t
s E t

VP H H Vg
  = = + ⋅    

& & &  (2.8) 

Dividing by tV  yields: 

 ( ) ( ) ( )0s t E t t tP V H V H V V g= = +& & &  (2.9) 

Envision an accelerometer aligned perfectly with the longitudinal flight path axis and 
calibrated in units of g. The accelerometer would be sensitive to both aircraft change in 
velocity ( /tdV dt ) and a component of gravity ( ( )/ / tdH dt V ). Equation (2.9) then becomes: 

 0x t tN H V V g= +& &  (2.10) 

In performance analysis, the axis system of interest is the flight path axis and not the 
body or earth axis, so the subscript f (f for flight path) is usually deleted on the flight path 
axis load factors. That is, we use xN  rather than 

fxN or even 
wxN (subscript w is for wind 

axis). Other references may use other symbologies.  
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2.2 Body Axis  

The aircraft axis system (Figure 2.1) is called the body axis system. The X-axis is defined 
through the center of the fuselage with positive being forward. The Y-axis is positive out the 
right wing and the Z-axis is positive down. The X-Y-Z body axis system is an orthogonal 
axis system usually originating at the center of mass of the aircraft.  

 
Figure 2.1  Aircraft Axis System 

If the acceleration of the vehicle in the body axis is known, then the flight path 
acceleration can be computed by transforming first through the angle of attack and then 
through the sideslip angle. The relationships for α  and β  as a function of the body axis true 
airspeed components are as follows: 

 ( )1tan bz bxV Vα −=  (2.11) 

 ( )1sin by tV Vβ −=  (2.12) 

 ( )2 2 2
t bx by bzV V V V= + +  (2.13) 

where: 

bxV  = body axis x component of the true airspeed, 

byV  = body axis y component of the true airspeed, 

bzV  = body axis z component of the true airspeed, and 

tV  = true airspeed. 
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2.3 True AOA and Sideslip Definitions 

The following illustration, shows angle of attack ([AOA] or α ) and angle of sideslip 
([AOSS] or β ) in relation to the body axis velocities. The following is the equivalent 
symbology for Figure 2.2. 

a. cg bxU V=  

b. cg byV V=  

c. cg bzW V=  

 
Note: Positive directions are shown. 

Figure 2.2  Angle of Attack and Sideslip Definitions 

AOA (α ) is the angle between the X-body axis and the projection of the true airspeed 
vector ( costV β⋅ ) on the X-Z body axis plane. AOSS (β ) is the angle between the velocity 
vector and the X-Z body plane. 

In three dimensions, the α  transformation matrix from the body axis to the flight path 
axis is as follows: 

 [ ]
cos 0 sin

0 1 0
sin 0 cos

α α
α

α α

 
 =  
 − 

 (2.14) 

In three dimensions, the β  transformation matrix from the body axis to the flight path 
axis is as follows: 
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 [ ]
cos sin 0
sin cos 0
0 0 1

β β
β β β

 
 = − 
  

 (2.15) 

The transformation of the acceleration from the body axis to the flight path axis is as 
follows (a subscript f [for flight path] will be dropped for the flight path axis):  

 
cos sin 0 cos 0 sin
sin cos 0 0 1 0
0 0 1 sin 0 cos

x bx

y by

z bz

A A
A A
A A

β β α α
β β

α α

       
      = − ⋅ ⋅      
      −       

 (2.16) 

Multiplying the equation 2.16 for the longitudinal load factor in the flight path axis yields 
equation 2.17. 

 cos cos sin cos sinx bx by bzA A A Aβ α β β α= ⋅ ⋅ + ⋅ + ⋅ ⋅  (2.17) 

The vast majority of performance maneuvers produce very low sideslip and lateral 
acceleration such that equation 2.17 may be approximated by equation 2.18 assuming zero 
sideslip. 

 cos sinx bx bzA A Aα α≅ ⋅ + ⋅  (2.18) 

In matrix shorthand, equation 2.16 is as follows: 

 { } [ ] [ ] { }bA Aβ α= ⋅  (2.19) 

where: 

,,x y zA A A   = three components of flight path accelerations, and 

, ,bx by bzA A A  = three components of body axis accelerations. 

Usually, analysis is performed using the flight path axis load factors, as shown in 
equation 2.20 through 2.22, rather than the above flight path accelerations. 

 0/x xN A g=  (2.20) 

 0/y yN A g=  (2.21) 

 0/z zN A g= −  (2.22) 

Note the sign change on the Z component.  

The topic of axis transformations is dealt with in more detail in the accelerometer section. 
There, we will deal with inertial axis (north, east, down), flight path axis, and with rate 
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corrections to accelerations and velocities in the body axis. Transformations are made to the 
body axis where the rate corrections are applied.  

2.4 In-Flight Forces  

Figure 2.3 illustrates the X and Z forces acting on an aircraft in flight. Figures 2.3 and 2.4 
illustrate the basic forces and angles of a typical aircraft in flight. It is, however, simplified in 
that all forces are acting through a single point. This is called the point mass model. Most 
conventional aircraft simulations utilize this simplification. A more complex model would 
distribute the lift and drag forces between the wing and tail. The tail may be a part of the 
wing as in an aircraft like the French Mirage. What we might otherwise call the trailing edge 
flap of the wing provides the pitching moment that a tail usually would.  

 
Figure 2.3  In-Flight Forces 

The flight path axis is defined by the true airspeed ( tV ) vector. 

a. D  - drag acting parallel to the flight path; 

b. L  - lift acting perpendicular to the flight path; 

c. α  - angle of attack - angle between x-body axis and the flight path axis; 

d. γ - flight path angle - angle between horizontal and the flight path; 

e. θ  - pitch attitude - angle between horizontal and x-body axis (not shown above); 

f. gF  - gross thrust – acting through the engine axis; 

g. eF  - net propulsive drag – acting through the flight path axis; and 

h. ti  - thrust incidence angle (not shown) – angle above the x-body axis through  which 
the gross thrust acts; often equals zero. 
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Figure 2.4  Axis System Angle Diagram 

Summing forces in the longitudinal or  X-flight path axis: 

 ( )0
0

t
x x x x t exx

WF m A N g N W F
g

 
= ⋅ = ⋅ ⋅ = ⋅ = 

 
∑  (2.23) 

where: 

exF  = excess thrust. 

 [ cos( ) ]ex g t eF F i F Dα= ⋅ + − −  (2.24) 

Some airframe manufacturers will define α  as the angle between the flight path axis and 
the wing axis. However, most will define α  as the angle between the flight path axis and the 
x-body axis, which is the definition used in this handbook.  

The true airspeed velocity vector and the inertial (or ground) speed vector will, in 
general, be in a different direction and a different magnitude. The vector relationship between 
true airspeed and groundspeed is simply airspeed equals groundspeed plus wind speed. 
However, this is a three dimensional relationship that we can represent in vector notation as 
follows: 

 t g wV V V= +
r r r

 (2.25) 
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where: 

true airspeed vectortV =
r

, 

ground speed vectorgV =
r

, and 

wind speed vectorwV =
r

. 

Wind direction, by meteorological convention, is the direction from which the wind is 
blowing. For instance, let’s say you are flying due north, with zero sideslip, at 500 knots. 
Heading is the direction the aircraft is pointing. Assume there is a 100 knot wind at 0 
degrees. That would mean the wind is 100 knots blowing from due north. Or in this case, a 
pure headwind of 100 knots. If you have a 100-knot headwind and a 500-knot true airspeed 
then the groundspeed is 400 knots. Airspeed equals groundspeed plus wind (plus is italicized 
to place emphasis). There is, in the aero community, some controversy as to the sign 
convention. This author considers plus to be the ‘correct’ sign. However, if one uses a 
negative sign and is consistant with definitions, the results will come out the same.  

Summing forces in the normal or Z-flight path axis: 

 ( )0
0

t
z z z z t

WF m A N g N W
g

 
= ⋅ = ⋅ ⋅ = ⋅ 

 
∑  (2.26) 

 sin( )z t g tN W L F iα⋅ = + ⋅ +  (2.27) 

where: 

normal load factorzN = , and 
liftL = . 

The propulsive drag ( eF ) is only  in the longitudinal flight path axis so that its 
contribution normal to the flight path is zero.  

SECTION 2.0 REFERENCE 

2.1 Walker, P.M.B., ed. 1995. Cambridge Air and Space Dictionary. Cambridge University Press. 
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3.0 ALTITUDE 

3.1 Introduction – Altitude 

There are several forms of altitude of interest in aircraft performance. For this text, 
generally, all units will be in feet. The first altitude is geometric (or tapeline) altitude ( h ). 
Geometric altitude is the physical, linear altitude measured from mean sea level. Mean sea 
level is defined (from Britannica ) as the height of the sea surface averaged over all stages 
of the tide over a long period of time. The length of a foot of geometric altitude does not vary 
as a function of temperature or gravity variation with altitude. In the early days of flight, the 
technology was not available to measure altitude onboard an aircraft. However, they could 
measure the outside ambient pressure. A standard atmosphere was defined which allowed the 
computation of an altitude that was proportional to the ambient pressure. That altitude is the 
pressure altitude, which we will denote with the symbology CH , where c stands for 
calibrated. In order to derive a relationship between pressure and pressure altitude, it became 
necessary to define another altitude called geopotential altitude ( H ). The length of 
geopotential altitude foot varies with increasing altitude proportional to the change in gravity 
with altitude. The gravity model that has been used to define the geopotential altitude is a 
simplified model based upon reference gravity at sea level ( 0g  = 32.174 ft/sec2) and gravity 
varying with altitude as per the inverse square gravity relationship.  

For the standard atmosphere model, CH  and H  are identical by definition. This requires 
that sea level pressure is exactly the standard atmosphere value and that temperature is 
precisely standard day at all altitudes (not just at the altitude being considered). As will be 
shown later, the difference between h  and H  at 50,000 feet is less than 200 feet, but this 
difference grows in proportion the square of altitude from the center of earth, where the 
radius of the earth is over 20 million feet. Finally, an altitude commonly used to compute 
piston-powered light aircraft performance is density altitude ( dH ). Density altitude is useful 
for light aircraft primarily because engine performance is generally proportional more to 
density than to pressure for internal combustion engines. Density altitude is proportional to 
atmospheric density, just as pressure altitude is proportional to atmospheric pressure.  
Density altitude and pressure altitude is the same on a standard day at the altitude being 
considered. In this case, it is not required that temperatures be standard at all altitudes as was 
the case for H and Hc being identical.  

3.2 Hydrostatic Equation 

We will derive the relationship between atmospheric pressure and altitude. Envision a 
cubic element of air with unit horizontal dimensions ( dx  and dy ) and a height equal to dh . 
The pressure on the bottom of the element is P . The pressure on the top of the element is 
P dP+ . The equation for static equilibrium of the element of air is as follows (the unit 
dimension into the page ( dy ) is not shown in Figure 3.1): 

 W g dx dy dzρ= ⋅ ⋅ ⋅ ⋅ =weight of the element of air (3.1) 
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W

P dP+

P

dh

dx

 
Figure 3.1  Element of Air 

 ( )P dP P g dx dy dz P g dhρ ρ+ = − ⋅ ⋅ ⋅ ⋅ = − ⋅ ⋅  (3.2) 

Since dx  and dy  are of unit length, and the height ( dz ) is equal to dh , 

 dP g dhρ= − ⋅ ⋅  (3.3) 

where: 

P  = pressure, 
ρ  = density, 
g  = acceleration of gravity, 
h  = height, and 
dh  = height increment. 

Using the inverse square gravity law: 

 
( )

2

0
0

0

rg g
r h

 
= ⋅ +  

 (3.4) 
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where: 

0r   = reference radius of the earth (20,855,553 ft), 
 = 6,356,772 meters, 

0g  = reference gravity (32.17405 ft/sec²), and 
 = 9.80665 m/sec2 (exactly by international agreement). 

Introducing the ideal gas equation of state: 

 P R Tρ= ⋅ ⋅  (3.5) 

Solving for ρ  in 3.5: 

 ( )
P

R Tρ = ⋅  (3.6) 

where:  

T   = ambient temperature, and 
R  = gas constant = 3,089.8136 ft²/(sec²°K). 

Value for R  is converted from metric units using the 1976 U.S. Standard Atmosphere. 
Substituting 3.4 and 3.6 into 3.3: 

 
2

0
0

0

rPdP g dh
R T r h

     = − ⋅ ⋅ ⋅  ⋅ +     
 (3.7) 

 ( ) ( ) ( ) 2
0 0 0/ 1/dP P g R T r r h dh = − ⋅ ⋅ + ⋅   (3.8) 

It is not a simple matter to integrate the above equation exactly. The concept of a 
geopotential altitude was introduced to allow for the integration. 

3.3 Geopotential Altitude 

Geopotential altitude is developed from equation 3.9. 

 0g dh g dH⋅ = ⋅  (3.9) 

where: 

g   = gravity at altitude h , 
h  = tapeline (or geometric) altitude, and 
H   = geopotential altitude. 
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A tapeline foot is the same physical length independent of height while a geopotential 
foot expands with increasing altitude linearly with the corresponding decrease in gravity. 

 
0

gdH dh
g

 
= ⋅ 
 

 (3.10) 

Substituting 3.10 into 3.3 and using 3.6:  

 ( )0 0
PdP g dH g dHR Tρ  = − ⋅ ⋅ = − ⋅ ⋅ ⋅ 

 (3.11) 

 ( ) ( )0/ /dP P g R dH T= − ⋅  (3.12) 

The above formula can be integrated if T  either is a constant or is linearly varying with 
geopotential altitude ( H ). This means you can look up the integration formula in a table of 
integrals. A standard atmosphere model has been defined which contains only constant or 
linear temperature segments. The first standard atmosphere, defined by the French in 1919, 
contained just one segment. The constants in that segment are still the same today (as of 
1976). This standard atmosphere purports to represent an average temperature model of the 
earth’s atmosphere throughout the world and during the various seasons.  

3.4 1976 U.S. Standard Atmosphere 

The 1976 U.S. Standard Atmosphere model is (as of the writing of this handbook) the 
accepted temperature and pressure profile model in the United States. The profile is presented 
in Tables 3.1 and 3.2. The region up to about 17 kilometers (56,000 feet) is known as the 
troposphere. Quoting from Britannica  Online: “troposphere - a term derived from the 
Greek words tropos, ‘turning’ and sphaira, ‘ball’.” The temperature decreases rapidly with 
altitude in this region. The rising warm air meets the sinking cold air and the air tends to 
“turn over” like a “ball” – hence the term troposphere. One would pause between layers, 
hence, the transition to the next layer is called the tropopause. To about 50 kilometers 
(164,000 feet), the temperature rises slowly in a region called the stratosphere. Altitudes 
higher than 50 kilometers are above the region of conventional aircraft performance, so we 
will not discuss those. However, the temperatures for the model atmosphere are included in 
Tables 3.1 and 3.2 to a geometric altitude of 86 kilometers.  

3.5 Temperature and Pressure Ratio 

We will define temperature ratio (θ ) and pressure ratio (δ ). These are, respectively, the 
ratio of ambient temperature to standard temperature at sea level and the ratio of ambient 
pressure to standard pressure at sea level. The formulas are as follows: 

 
288.15SL

T T
T

θ = =  (3.13) 
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2116.22SL

P P
P

δ = =  (3.14) 

where: 

T  = units of degrees K, and  
P  = units of pounds/foot2. 

Table 3.1 
1976 U.S. STANDARD ATMOSPHERE 

Geopotential 
Height 

(m) 

Geopotential 
Height 

(ft) 

Temperature 
Gradient 

(°K/1,000 ft) 

 
Temperature 

(°K) 

 
Pressure 

(pounds/ft2) 
0 0 -1.9812 288.15 2,116.2166 

11,000 36,089 0.0000 216.65 472.6805 
20,000 65,617 0.3048 216.65 114.3454 
32,000 104,987 0.8534 228.65 18.1289 
47,000 154,199 0.0000 270.65 2.31632 
51,000 167,323 -0.8534 270.65 1.39805 
71,000 232,940 -0.6096 214.65 0.082632 
84,852 278,386 N/A 186.95 0.0077983 

Notes: 1.  The temperature gradient and base temperature in the first segment of the standard 
atmosphere has remained unchanged since the 1925 U.S. Standard Atmosphere. 

 2.  The standard atmosphere is defined in metric units. The exact conversion factor from 
meters to feet is to divide meters by 0.3048. 

 3.  The highest altitude in the table is an even 86,000 meters geometric (tapeline) altitude.  
 

Table 3.2 
STANDARD ATMOSPHERE PRESSURE AND TEMPERATURE 

Geopotential 
Altitude ( H ) 

(ft) 

Ambient  
Pressure ( P ) 
(pounds/ft2) 

 
Pressure 

Ratio (δ ) 

Ambient 
Temperature (T ) 

(°K) 

 
Temperature 

Ratio (θ ) 
0.00 2116.22 1.0000 288.15 1.0000 
5,000 1760.80 0.8320 278.24 0.9656 

10,000 1455.33 0.6877 268.34 0.9312 
15,000 1194.27 0.5643 258.43 0.8969 
20,000 972.49 0.4595 248.53 0.8625 
25,000 785.31 0.3711 238.62 0.8281 
30,000 628.43 0.2970 228.71 0.7937 
35,000 497.95 0.2353 218.81 0.7594 

36,089.24 472.68 0.2234 216.65 0.7519 
40,000 391.68 0.1851 216.65 0.7519 
45,000 308.01 0.1455 216.65 0.7519 
50,000 242.21 0.1145 216.65 0.7519 
55,000 190.47 0.09001 216.65 0.7519 
60,000 149.78 0.07078 216.65 0.7519 
65,000 117.78 0.05566 216.65 0.7519 
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  Table 3.2 (Concluded) 
STANDARD ATMOSPHERE PRESSURE AND TEMPERATURE 

Geopotential 
Altitude ( H ) 

(ft) 

Ambient  
Pressure ( P ) 
(pounds/ft2) 

 
Pressure 

Ratio (δ ) 

Ambient 
Temperature (T ) 

(°K) 

 
Temperature 

Ratio (θ ) 
65,616.8 114.350 0.05403 216.65 0.7519 
70,000 92.684 0.04380 217.99 0.7565 
75,000 73.054 0.03452 219.51 0.7618 
80,000 57.674 0.02725 221.03 0.7671 
85,000 45.608 0.02155 222.56 0.7724 
90,000 36.123 0.01707 224.08 0.7777 
95,000 28.656 0.01354 225.61 0.7820 
100,000 22.768 0.01076 227.13 0.7882 

 

The numbers in Tables 3.1 and 3.2 represent the model atmosphere. On any given day, 
there will be variation from that model (refer to Appendix A for what the average variation is 
for data taken above Edwards AFB).  

3.6 Pressure Altitude 

3.6.1 Case 1: Constant Temperature  

 0T T=  (3.15) 

Substituting 3.15 into the relationship 3.12: 

 ( ) ( )0 0/dP P g R dH T= − ⋅  (3.16) 

We will integrate using a table of integrals and relationships for natural logarithms. Since 
0 0,g R and T  are each constant: 

 
( ) ( ) ( )0 0

0 0
0 0

ln( ) ln( ) g gdP P P dH H H
P R T R T

   − −= − = ⋅ = ⋅ −      ⋅ ⋅   
∫ ∫  (3.17) 

Solving for P  in 3.17: 

 ( ) ( ){ }0
0

0
0

g H HR TP P e
 − ⋅ − ⋅ = ⋅  (3.18) 

Solving for H : 

 ( )0
0

0 0
lnR T PH H g P

 ⋅  = − ⋅      
 (3.19) 
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For the segment of the atmosphere from 11,000 meters (36,089 feet) to 20,000 meters  
(65,617 feet): 

a. 0T  = 216.65 °K (-69.7 °F or -56.5 °C), 

b. 0P  = 472.68 pounds/ft2 0at H H= , and 

c. 0H  = 36,089.24 feet (11,000 m). 

3.6.2 Case 2: Linearly Varying Temperature 

Assume a temperature that varies linearly with altitude as follows: 

 ( )0 0T T a H H= + ⋅ −  (3.20) 

where: 

0T  = base temperature, 

0H  = base geopotential altitude, and 
a  = temperature gradient (deg K/foot). 
 
Substituting, again, into the relationship (3.12) ( ) ( )0/ /dP P g R dH T= − ⋅ : 

 
[ ]( )
0

0 0

/ gdP P dH
R T a H H

  = − ⋅ 
 ⋅ + ⋅ −   

 (3.21) 

Integrating from a table of integrals: 

 
( ) ( )1 lndx a bx
a b x b

= ⋅ +
+ ⋅∫   

Then using the relationship ln( ) ln( ) ln( / )u v u v− = : 

 ( )
( )( )0 00

0 0

ln ln
T a H HgP

P R a T

 + −   = − ⋅     ⋅      
 (3.22) 

Solving for P : 

 ( )
( )

0

0 0
0

1
g

R aaP P H HT

 − ⋅   = ⋅ + ⋅ −    
 (3.23) 

Or solving for H : 
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( )

0
0

0
0

1
R a

g TPH H P a

− ⋅ 
    = + − ⋅   
    
 

 (3.24) 

For the first segment of the standard atmosphere (zero to 11,000 meters; zero to 
36,089.24 feet), substituting constants (from the international standard atmosphere)  [for 
English units]: 

 ( )
0

1.9812 /1000
6.8755856 6

288.15
a ET− = = −  (round to 6.87559 6E − ) (3.25) 

 ( ) ( )
0 32.17405 5.255876

3089.8136 1.9812 /1000
g

R a− = =⋅  ⋅ 
 (round to 5.2559) (3.26) 

 ( )5.2559

0
1 6.87559 6P E HP = − − ⋅  (3.27) 

Solving for H : 

 

( )

( )

1 5.2559

0
1

6.87559 6

P
P

H
E

  −    =
−

 (3.28) 

Equation 3.26 is the definition of pressure altitude for altitudes from zero to 36,089 feet 
(zero to 11,000 meters). 

Using the pressure ratio (δ) as defined in equation 3.14. 

 
SL

P
Pδ =  (3.29) 

where: 

SLP  = standard sea level pressure = 101,325 pascals (exactly, by international agreement). 

The unit pascal has been defined as a newton of force per square meter. A newton has 
units of (kg m/sec2). One newton is equal to 0.2248195 pounds force. 

In various English units: 

SLP  = 2,116.2166 pounds/ft² (usually rounded to 2,116.22); 

 ≅  760 mm Hg; 

 = 1,013.25 millibar (mb); and 

 = 29.92 in. Hg 
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Substituting 3.29 into 3.28: 

 
( )

( )

1 5.25591

6.87559 6CH
E

δ − =
−

 (3.30) 

The above is for zero to 36,089 feet pressure altitude. 

The symbol CH  is used for pressure altitude to distinguish it from the geopotential 
altitude ( H ).  Pressure altitude and geopotential altitudes are only identical for the model 
atmosphere. 

Similarly: 

 ( )5.25591 6.87559 6 CE Hδ = − − ⋅  (3.31) 

For the temperature ratio (θ ), using equation 3.20 and substituting constants (from the 
international standard atmosphere): 

 0 1.9812 1 6.87559 6
288.15 288.15 1,000

TT H E Hθ = = − ⋅ = − − ⋅  (3.32) 

The second segment of the standard atmosphere (11,000 to 20,000 meters) (36,089 to 
65,617 feet) is a constant temperature (T =-56.5 degrees C) segment. The standard 
atmosphere is defined in metric units. English units require the conversion factor of 0.3048 
meters per foot. For instance, the 11,000-meter point is 36,089.24 feet. 

For the altitude segment between 36,089 feet and 65,617 feet: 

 
( )0 0

32.17405/( ) 4.806343 5
3089.8136 216.65

g R T E⋅ = = −
⋅

 (3.33) 

 0

0
20,805.84R T

g
⋅  = 

 
 

Computing δ  for 36,089.24H = feet using the δ  formula for the first segment of the 
atmosphere (equation 3.31): 

 [ ] ( ){ }4.806343 5 36089.240.22336 CE Heδ − − ⋅ −= ⋅  (3.34) 

For the temperature ratio (θ ), using equation 3.20 and substituting constants (from the 
international standard atmosphere): 

 0 1.9812 1 6.87559 6
288.15 288.15 1,000

TT H E Hθ = = − ⋅ = − − ⋅  (3.35) 
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The equations for any segment of the 1976 U.S. Standard Atmosphere can be derived by 
simply applying the above equations since all segments of the standard atmosphere are either 
constant temperature or linearly varying temperature versus pressure altitude. 

The standard atmosphere pressure ratio versus pressure altitude is nearly a straight-line 
logarithmic function as can be seen in Figure 3.2. 

Log(delta) versus Pressure Altitude [K Feet]
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Figure 3.2  Logarithmic Variation of Pressure Ratio  

The logarithm in Figure 3.2 is base 10. As can be seen, at each 50K point the atmospheric 
pressure decreases by a factor of 1/10th. For instance at 50K the pressure ratio is 0.1145, at 
100K it is 0.01076, at 150K it is 0.00010946, etc. As discussed earlier, all the segments of the 
standard atmosphere are either constant temperature or linearly varying with altitude. Figure 
3.3 illustrates the linear temperature segments.  
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Figure 3.3  Standard Atmosphere Temperature 

3.7 Geopotential Altitude (H) versus Geometric Altitude (h) 

Using the inverse square gravity law and the definition of H: 

 
( )

2

0
0

0

rg g
r h

 
= ⋅ +  

 (3.36) 

 0g dh g dH⋅ = ⋅  (3.37) 

Substituting 3.36 into 3.37 and solving for dH : 

 ( )0

2

0rdH dh
r h

 
 = ⋅

+  
 (3.38) 

Integrating gives the relationship between H and h (or tapeline). From a table of integrals: 

 
( ) ( )2

1dx
b a bxa bx

= −
++∫  

In our case, 0a r= , 1b =  and x h= . 

Factoring out the 2
0r  term in the numerator: 
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( ) ( )

2 2
0 02

0 00 0

1 1h dhH r r
r h rr h

 
= ⋅ = ⋅ − + ++   

∫  (3.39) 

Multiply the first term in square brackets by 0

0

r
r  and the second term by ( )

( )
0

0

r h
r h

+
+ . 

 
( )

( )
( )

2 00
0

0 0 0 0

r hrH r
r h r r h r

 +−= ⋅ + + ⋅ + ⋅  
 (3.40) 

By factoring terms, we get: 

 
( )

0

0

rH h
r h

 
= ⋅ +  

 [ ]0 20,855,553 feetr =  (3.41) 

At 50,000 feet tapeline altitude (the upper limit of most conventional aircraft 
performance testing), H computes to be 49,881 feet, for a difference of only 119 feet, or 0.24 
percent. 

3.8 Geopotential versus Pressure Altitude - Nonstandard Day  

A standard temperature may exist at a given altitude on a test day but there would never 
be a standard atmosphere at all altitudes except in computer models. 

Using the basic /dP P  relationship (3.12): 

 0( / ) ( / )C STDdP P g R dH T= − ⋅ standard day (3.42) 

 0( / ) ( / )dP P g R dH T= − ⋅ test day (3.43) 

There can be a significant difference between having a standard atmosphere and 
achieving standard temperature at a given altitude. The pressure levels at a given pressure 
altitude are by definition the same whatever the temperature. Therefore, we could equate the 
right sides of equations 3.42 and 3.43. 

 / /C STDdH T dH T=  (3.44) 

where: 

test dayT T= . 

 C
STD

TdH dHT
 = ⋅ 
 

 (3.45) 

Since dh dH≅  (i.e., ∆ tapeline ≅ ∆ geopotential): 
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 C
STD

Tdh dHT
 = ⋅ 
 

 (3.46) 

Or in a climb, for instance: 

 C
STD

Th HT
 = ⋅ 
 

& &  = rate of climb (3.47) 

Sample calculation:  

Assume a climb through 30,000 feet with /CdH dt = 1,000 ft/min = rate of change of 
pressure altitude. Then, presume a test day temperature that is 10.0 degrees C hotter than 
standard day. Standard day temperature at 30,000 feet is 228.7 degrees Kelvin (K).  

Inserting these values into 3.45: 

 ( )228.7 10.0 1,000 1,043.7228.7h  += ⋅ = 
 

&  (3.48) 

The physical rate of climb (the derivative of tapeline altitude) is 4.4 percent higher than 
the rate of change of pressure altitude for being 10 degrees C hotter than standard day. 
Average temperatures for the Air Force Flight Test Center (AFFTC) at altitudes from 10,000 
feet every 10,000 feet to 50,000 feet can be found in Appendix A. As can be seen, it is not 
uncommon to be off standard day by 10 degrees C or more.  

3.9 Effect of Wind Gradient  

Average wind speed and direction data for the AFFTC, as a function of altitude for each 
month, can be found in Appendix A. This is average data for a time span of over 30 years. To 
illustrate the effect of wind on climb performance we will take data from January at pressure 
altitudes of 13,801 feet (600 mb [millibar]) and 23,574 feet (400 mb). Standard sea level 
pressure in millibars is 1013.25. We will conduct calculations for a climb speed of 280 knots 
calibrated airspeed ( CV ). This is typical for F-16 and large transport aircraft. Table 3.3 
contains the average meteorological data and computed variables. 

Table 3.3 
EDWARDS AVERAGE WEATHER DATA FOR JANUARY 

Pressure 
Altitude 

(ft) 

Geometric 
Altitude 

(ft) 

Standard 
Temperature 

(deg K) 

Delta 
Temperature 

(deg K) 

Ambient 
Temperature 

(deg K) 

 
Wind speed 

(kts) 
13,801 14,065 260.8 3.2 264.0 28.7 
23,574 23,937 241.4 1.0 242.4 43.5 
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Now, we wish to compute the change in energy altitude for climbing directly into the 
wind (headwind) and with the wind (tailwind). The inertial energy altitude, as derived in the 
first section, is as follows: 

 ( )
2

02
g

E
VH h g= + ⋅  (3.49) 

Table 3.4 shows the values of groundspeed and energy altitude for a headwind, tailwind, 
and zero wind. In each case, the calibrated airspeed is the same at 280 knots.  

Table 3.4 
ENERGY ALTITUDE EFFECT OF WIND GRADIENT 

Altitude 
( h )  
(ft) 

Airspeed 

( tV ) 
(kts) 

Headwind 

( gV ) 
(kts) 

Tailwind 

( gV ) 
(kts) 

No Wind 

( EH ) 
(ft) 

Headwind 

( EH ) 
(ft) 

Tailwind 
( EH ) 

(ft) 
14,065 343.4 314.7 372.1 19,285 18,449 20,194 
23,937 396.5 353.0 440.0 30,897 29,453 32,507 

 
Calculating the delta energy altitudes: 

a. Zero Wind EH∆  = 30,897-19,285 = 11,612 feet, 

b. Headwind  EH∆  = 29,453-18,449 = 11,004 feet, and 

c. Tailwind  EH∆   = 32,507-20,194 = 12,312 feet. 

Comparing these numbers, on an average day over Edwards AFB in January, the change 
in energy altitude is 1,308 feet greater flying with a tailwind than flying into a headwind. 
This is over the geometric altitude range of 14,065 to 23,937 feet. This is 11.9 percent 
compared to the headwind number or 6.0 percent compared to zero wind. In making this 
comparison we have ignored the flight path angle. The airspeed vector is inclined with 
respect to the horizontal by the flight path angle while the winds are in the horizontal plane.  

When climb performance is measured using the altimeter (pressure altitude) large errors 
could be induced due to wind gradients. This is why opposite heading climb data are obtained 
("sawtooth climbs"). The wind gradient effect can now be accounted for using GPS or INS 
data.  

3.10 Density Altitude 

Density altitude is nothing more than an altitude on a test day that produces an equivalent 
density on a standard day. The density altitude parameter has been used primarily for 
reciprocating engines, whose power output is generally proportional to air density (i.e., 
density altitude). Since the reciprocating engine is generally flown at altitudes below 11 km 
(kilometer); the pressure and temperature ratio equations for the first segment of the 
atmosphere are appropriate. The relations (equations 3.31 and 3.32) were derived above in 
the altitude portion of this section.  
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 ( )5.25591 6.87559 6 CE Hδ = − − ⋅  

 ( )1 6.87559 6 CE Hθ = − − ⋅  

The first formula (δ ) is valid for standard or any nonstandard day. That is, pressure ratio 
is a function of pressure altitude only and vice versa. On the other hand, the temperature ratio 
(θ ) formula is valid only for standard temperatures.  

We can compute density ratio (σ ) for a standard day, by taking the ratio of the above 
formulas. 

 ( )
( ) ( )

5.2559
4.25591 6.87559 6

1 6.87559 6
1 6.87559 6

C
C

C

E H
E H

E H
δσ
θ

− − ⋅
= = = − − ⋅

− − ⋅
 (3.50) 

The above σ  formula is valid only for standard day. However, one could define the 
density altitude ( dH ) as being directly proportional to density as defined by equation 3.50. 

 ( )4.25591 6.87559 6 dE Hσ = − − ⋅  

Let’s give an example. We are at 10,000 feet pressure altitude at 100 degrees F. The 
pressure ratio is: 

 5.2559(1 6.87559 6 10,000) 0.6877Eδ = − − ⋅ =  

On a standard day, the temperature would have been: 

 ( )1 6.87559 6 10,000 0.9312Eθ = − − ⋅ =  
 ( )288.15 288.15 0.9312 268.3 268.3 273.15 1.8 32 23.3T Fθ= ⋅ = ⋅ = = − ⋅ + = °   

The standard day σ is: 

 0.6877 0.7384
0.9312

σ = =  

Solving for dH  

 
[ ] ( )[ ]1 4.2559
1 4.2559 11

6.87559 6 6.87559 6dH
E E

δσ θ
  −   −      = =

− − 
  

 (3.51) 

For the test day temperature of 100 degrees F: 
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 ( )459.67 100
1.0790

518.67
θ

+
= =  

The σ  for the test day would be: 

 0.6877 0.6373
1.0790

δσ
θ

= = =  

Then, computing dH  we get: 

 
1/ 4.25590.68771 / 6.87559 6

1.0790dH E
  = − −  

   
 (3.52) 

 14,607dH =  feet versus 10,000 feet for CH  (pressure altitude). 

Equation 3.52 shows the density (or σ ) at 100 degrees F at 10,000 feet pressure altitude 
is the same as at 14,607 feet pressure altitude on a standard day for that altitude. To check on 
our calculations, calculate the standard density ratio for 14,607 feet as follows:  

a. ( )5.25591 6.87559 6 14,607 0.5733Eδ = − − ⋅ = , 

b. (1 6.87559 6 14,607) 0.8996Eθ = − − ⋅ = , and 

c. 0.5733 0.6373
0.8996

δσ
θ

= = = . 

It checks! The density ratio for 100 degrees F at 10,000 feet pressure altitude is identical 
to the density ratio at a density altitude of 14,607 feet.   

3.11 Pressure Altitude Error Due to Ambient Pressure Measurement Error 

At Edwards AFB, the field elevation (geometric height) of the main runway (22/04) is 
2,300 feet. With standard atmospheric conditions, the pressure altitude would also be 2,300 
feet. That requires more than just being at standard temperature. As we have derived, 
pressure altitude is only a function of ambient pressure and is independent of ambient 
temperature. Using the standard atmosphere model formulas, we can compute what a 1-foot 
change in altitude will produce in ambient pressure. Table 3.5 shows the resultant pressure 
error for a 1-foot error in pressure altitude.  
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Table 3.5 
PRESSURE ERROR VERSUS ALTITUDE ERROR 

CH  
(ft) 

δ  P  
(psf) 

P∆  
(psf) 

P  
(in. Hg) 

P∆  
(in. Hg) 

P  
(millibar) 

P∆  
(millibar) 

0.0 1.00000 2116.22 -0.076 29.921 -0.0011 1,013.250 -0.037 
2,300 0.91963 1946.15 -0.071 27.516 -0.0010 931.820 -0.034 
10,000 0.68770 1455.33 -0.056 20.577 -0.0008 696.820 -0.027 
20,000 0.45954 972.49 -0.041 13.750 -0.0006 465.630 -0.020 
30,000 0.29695 628.43 -0.029 8.885 -0.0004 300.890 -0.014 
40,000 0.18509 391.68 -0.019 5.538 -0.0003 187.540 -0.009 
50,000 0.11446 242.21 -0.012 3.425 -0.0002 115.972 -0.006 

Note:  The pressure errors are carried to one extra digit than the pressure magnitude. 

Data recording system resolution is a limitation for any parameter, but let us use pressure 
altitude as an illustration. Looking at the inches of mercury column, one can see that better 
than 1/1000th of an inch of mercury accuracy would be required to achieve 1-foot accuracy 
in pressure altitude. It turns out that such accuracy level instrumentation is available. There 
are two other limiting factors on altitude accuracy. First, is the number of digits recorded in 
the data stream. The data recording is an 8, 10, 12, 14, or 16 “bit” system. An 8-bit system 
breaks full scale into 82 (or 256) parts. If full scale were 30 in. Hg, then the resolution of 
ambient pressure would be 30/256=0.117 in. Hg. At sea level, this would be an altitude error 
of  
0.117 in. Hg/(0.0011 in. Hg/ft)=107 feet. Clearly, this is unacceptable for performance 
testing. For higher bit resolution the following numbers are computed: 

a. 102  = 1,024  P∆ = 30/1,024= 0.029 in. Hg   CH∆ =0.029/0.0011=26 feet 

b. 122  = 4,096  P∆ = 30/4,096= 0.0073 in. Hg  CH∆ =0.0073/0.0011=6.6 feet 

c. 142  =16,384  P∆ = 30/16,384= 0.0018 in. Hg  CH∆ =0.0018/0.0011= 1.6 feet 

d. 162   = 65,536 P∆ = 30/65,536= 0.0005 in. Hg CH∆  = 0.0005/0.0011= 0.5 feet 

Therefore, it appears that at least at sea level, a 14-bit system will get us to our goal of 1-foot 
accuracy. However, let us see what happens at 50,000 feet. We have the same value for 

142 =16,384: 

a. P∆ =30/16384=0.0018  CH∆ =0.0018/0.0002=9.0 ft 

Therefore, our error due to recording system resolution is substantially larger at the higher 
altitudes.  However, a 9-foot error at 50,000 feet is considered acceptable.  The AFFTC pacer 
aircraft use a 16-bit system. The second limiting factor on altitude accuracy is the ‘position 
error,’ discussed in the air data calibration section.  
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4.0 AIRSPEED 

4.1 Introduction – Airspeed 

Aircraft speed can be expressed in several forms. For this text, generally, the units will be 
in either knots (nautical miles per hour) or feet per second, except for Mach number ( M ), 
which is dimensionless. Groundspeed ( gV ) is the physical speed relative to the ground and is 
usually expressed as a vector relationship with north, east, and down components. This is due 
to obtaining groundspeed from INS (inertial navigation system) or GPS (global positioning 
system) data sources. True airspeed ( tV ) is the physical speed of the aircraft with respect to 
the moving air mass. This is usually a scalar quantity, though components of true airspeed 
can be computed using axis transformations using INS velocities and angles and wind speeds. 
Wind speed ( wV ) is the speed of the air mass (wind) with respect to the ground. This is also a 
vector quantity with north, east and down components.  The Mach number ( M ) is the ratio 
of true airspeed to the local speed of sound. Mach numbers less than 1 are referred to as 
subsonic and those greater than 1 are supersonic. The speed of sound is a function of the 
square root of the ambient temperature. Calibrated airspeed ( CV ) is the speed displayed on a 
typical cockpit airspeed indicator. It is a function of only one parameter differential (or 
impact) pressure. Impact pressure is the difference between total and ambient pressure. The c 
(calibrated) has two meanings. The first is that calibrated airspeed is ‘calibrated’ to sea level 
in the sense that it will be exactly equal to true airspeed at sea level, standard day, but only at 
that condition. The second is calibrated versus indicated. A pneumatic instrument (physically 
driven from pressure inputs) displays an ‘indicated’ value. The value has instrument and 
position errors. The instrument errors are errors due to the instrument itself. Position errors 
are those due to the location of pressure probes. There may be some ideal location to place 
probes where the errors are zero. However, in the real world, there is no such position so 
there will always be position errors of some magnitude. Once instrument and position error 
corrections are applied, the indicated airspeed becomes calibrated airspeed. 

In aircraft equipped with an ADC (air data computer), those corrections are usually 
already applied in the ADC so that the displayed airspeed is calibrated airspeed. Calibrated 
airspeed, as mentioned above, is a function only of the impact pressure. That pressure is also 
designated compressible dynamic pressure. A measure of airspeed that is a function of 
incompressible dynamic pressure is called equivalent airspeed ( eV ). Structural analysis is 
often in terms of incompressible dynamic pressure, so that equivalent airspeed is a useful 
speed for structural testing. At sea level, standard day, calibrated airspeed and equivalent 
airspeed are equal (or equivalent), but only at that condition. 

4.2 Speed of Sound   

The speed of sound is computed by the following formula: 

 ( )a R Tγ= ⋅ ⋅  (4.1) 
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where: 

a  = speed of sound (ft/sec), 
γ  = 1.40 (ratio of specific heats), and 
R  = 3,089.8136 ft²/(sec² °K) (from the 1976 U.S. Standard Atmosphere). 

For a sea level standard day, T  = 288.15 °K. Then, 

 [ ]1.40 3089.8136 288.15a = ⋅ ⋅  (4.2) 

  = 1,116.4505 ft/sec (usually rounded to 1116.45) 

 = 661.4788 knots (usually rounded to 661.48) 

For the speed of sound at temperatures other than standard sea level, 

 
( )

SL SLSL

R Ta T
a TR T

γ
γ

⋅ ⋅
= =

⋅ ⋅
 (4.3) 

Then, define θ  as the ratio of test day temperature to standard day temperature at sea level. 

 SLa a θ= ⋅  (4.4) 

4.3 History of the Measurement of the Speed of Sound  

From Britannica  On-line, the speed of sound in air was first measured by the French 
scientist Pierre Gassendi in the 1600s at 478.4 meters per second. He “measured the time 
difference between spotting the flash of a gun and hearing its report over a long distance.” 
Very clever! In the 1650s, two Italians (Giovanni Borelli and Vincenzo Viviani) obtained a 
much more accurate value of 350 meters per second. The first precise value was obtained at 
the Academy of Sciences in Paris in 1738 at 332 meters per second. Britannica  reports a 
value of 331.45 meters per second was obtained in 1942, which was amended to 331.29 
meters per second in 1986. These values were at 0 degrees C.  

In 1942, NACA (National Advisory Committee for Aeronautics) published Report No. 1235. 
In that report, they specified the speed of sound at sea level standard day as 1116.89 feet/second. 
Converting the NACA number to meters per second and to 0 degrees C: 

a. 273.151116.89 0.3048 331.45
288.15

a = ⋅ ⋅ =  meters/second 

In 1962 and again in 1976, the ICAO (International Civil Aviation Organization) agreed 
upon constants for use in a standard atmosphere. The speed of sound is not directly defined, 
but could be computed from the other constants. The speed of sound at sea level in English 
and metric units is as follows: 

a. 1116.4505SLa =  ft/sec  = 340.2941 m/sec 
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4.4 The Nautical Mile  

The nautical mile (nm) has been set, by international agreement, to exactly 1,852 meters. 
The conversion factor from feet to meters is also an exact number 0.3048 meters per foot. 
Therefore, we can compute the number of feet per nautical mile. 

a. 1,852 / 0.3048 6,076.1155 feetNM = =   

Since a knot is 1 nm per hour, the conversion from knots to feet per second is as follows: 

a. 6,076.115 Hourfeet/sec 1.6878 knots
Hour 3,600 sec

NM= ⋅ =  

An early definition of a nautical mile was an even 6,080 feet. It is called the British 
nautical mile. With that definition, the conversion factor becomes: 

a. 6,080. Hourfeet/sec 1.6889 knots
Hour 3,600 sec

NM= ⋅ =  

One would see the above conversion factor in textbooks published prior to the U.S. 
standard atmosphere of 1959, which had many of the same constants as the 1962 and 1976 
atmospheres. Using the 1942 speed of sound and the early knots to feet per second 
conversion one gets: 

a. 1,116.89 /1.6889 661.31 knotsSLa = =  

With the modern (as of this writing) values: 

b. 1,116.45 /1.6878 661.48 knotsSLa = =  

4.5 True Airspeed   

True airspeed ( tV ) is the physical speed of the vehicle relative to the moving air mass. 
The true airspeed is a vector quantity. The relationship between true airspeed and the speed 
with respect to the ground ( gV ) is: 

 t g wV V V= +
r r r

 = true airspeed vector (4.5) 

where: 

wV =
r

 wind speed vector. 

4.6 Mach Number  

Mach number ( M ) is defined as the ratio of true airspeed to the local speed of sound. 

 tVM a=  (4.6) 
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We could compute Mach number from Pitot-static theory with the simple expression for 

differential pressure ( Cq ) versus total pressure detected by a Pitot tube ( tP′ ) and ambient 
pressure ( P ). The prime on the total pressure is to denote a measurement behind a normal 
shock (for M ≥1). For M <1, the free stream total pressure ( tP ) and the measured total 

pressure ( tP′ ) are identical. Differential pressure is also compressible dynamic pressure and 
often designated impact pressure.  

 Cq  = tP′  − P   

Or dividing both sides by P :  

 Cq
P  =

 tP′  
P  − 1 (4.8) 

Using Bernoulli’s Equation for 1M <  : 

 ( ) ( )1
211 12

Cq MP

γ γ
γ

 −    −= + ⋅ −  
  

 (4.9) 

And the Rayleigh Supersonic Pitot Equation for 1M ≥ : 

 ( ) ( ) ( )
( ) ( )

( )1/ 1
1

2
1 12

11 12 1 2
Cq MP M

γ
γ γ

γ

γγ

γ γ

 −  
 −  

 −  

 +  +  = ⋅ ⋅ −       − + ⋅ ⋅  

 (4.10) 

Substituting γ =1.40 for M <1: 

 ( )3.521 0.2 1cq MP = + ⋅ −  (4.11) 

Solving for M  in equation 4.11: 

 
[ ]1 3.5

5 1 1CqM P
    = ⋅ + −        

 (4.12) 

For 1M ≥ : 

 ( ) ( )

2.5
3.52

2

2.41.2 1
0.4 2.8

Cq MP M

    = ⋅ ⋅ − 
− + ⋅    

 (4.13) 
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Multiply by 1= (2.50/2.50)2.5 and collect terms. Multiply the first term { 2 3.5(1.2 )M⋅ } by 
2.52.50  and divide the second term in the { } brackets by the same 2.52.50  factor. 

 ( )( ) ( )
2.5

2 3.53.5 2.5
2.52

2.41.2 2.5 1
0.4 2.5 2.8 2.5

Cq MP M
⋅= ⋅ ⋅ ⋅ −

− ⋅ + ⋅ ⋅
 (4.14) 

 
( )

7
3.5 2.5 2.5

2.52
1.2 2.5 2.4 1

7 1

M

M
= ⋅ ⋅ ⋅ −

⋅ −
 (4.15) 

 3.5 2.5 2.51.2 2.5 2.4 166.9215801⋅ ⋅ =  (round to 166.9216) 

 
( )

7
2.52

166.9216 1
7 1

Cq M
P M

 
 = ⋅ −
 ⋅ − 

 (4.16) 

Note that one produces the identical value for /Cq P  when M  = 1.0 is inserted into 
either the subsonic (equation 4.11) or supersonic (equation 4.16) formula. For example: 

a. 
1.0

/ 0.892929C M
q P

=
=  

Solving for M  in the supersonic formula (4.16), first add 1 to both sides, then multiply 

both sides by the term ( )2.527 1M⋅ − . 

 ( )2.52 71 7 1 166.9216Cq M MP
 + ⋅ ⋅ − = ⋅ 
 

 

Then, divide both sides by ( )2.527 M⋅ . 

 ( )
( ) [ ]

2.5 72
2

2 2 2.52.5

166.92167 11 1.287560
7 7

C
MMq MP M M ⋅

⋅ ⋅ − + ⋅ = = ⋅     ⋅ ⋅ 
 

Finally, solve for M  from the M  on the right side. 

 
2.5

2

10.881285 1 1
7

CqM P M

     = ⋅ + ⋅ −      ⋅    

 (4.17) 

As can be seen, M  appears on both sides of the equation. One method to approach the 
supersonic M  calculation in a computer algorithm is first determine if M  is indeed greater 
than 1.0 by calculating M  from the subsonic equation (4.12).  If M  is greater than 1.0 at 
that point, then use the value of M  from the subsonic equation as the initial condition in the 
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supersonic equation. Then perform a simple iteration until M  converges to a value - usually 
in just a few iterations. 

4.7 Total and Ambient Temperature 

A total temperature probe is used to measure total temperature ( tT ). Assuming this probe 
is in the freestream with no heat loss (adiabatic), then the relationship between total 
temperature and ambient temperature (T ) is as follows: 

 ( ) ( )2 21
1 1 0.2

2tT T M T M
γ −

= ⋅ + ⋅ = ⋅ + ⋅ 
 

 (4.18) 

4.8 Calibrated Airspeed   

Historically, airspeed indicators were constructed with a single pressure input being the 
differential pressure ( Cq ). The gauge is “calibrated” to read true airspeed at sea level 
standard pressure and temperature. The subsonic and supersonic Mach number equations are 
used with the simple substitutions of ( /C SLV a ) for M  and SLP  for P . However, the 
condition for which the equations are used is no longer subsonic ( M <1) or supersonic 
( M >1) but rather calibrated airspeed being less or greater than the speed of sound ( SLa ), 
standard day, sea level (661.48 knots). 

For C SLV a< : 

 
3.52

1 0.2 1C C

SL SL

q V
P a

  = + ⋅ −    
 (4.19) 

 
(1 3.5)

5 1 1C
C SL

SL

qV a P
    = ⋅ ⋅ + −       

 (4.20) 

For C SLV a≥ : 

 
( )

( )

7

2.52

166.9216
1

7 1

C SLC

SL
C SL

V aq
P

V a

⋅
= −
 ⋅ − 

 (4.21) 

Solving for CV  and noting that the formula is similar in form to the M  equation, we will 
leave out intermediate steps.   
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2.5

2
10.881285 1 1

7

C
C SL

SL
C

SL

qV a P V
a

           = ⋅ ⋅ + ⋅ −        ⋅        

 (4.22) 

Notice the differences between equations 4.22 and 4.17. We will leave it to the reader to 
make that comparison.  

Note that CV  occurs on both sides of equation 4.22. The solution is simply to use the 
subsonic formula to obtain a first iteration, then successively iterate on the above equation. It 
will converge in just a few steps. It should be emphasized that the supersonic formula is 

C SLV a>  and not 1M > . 

Figure 4.1 illustrates the difference of true airspeed versus calibrated airspeed. In 
summary, the true airspeed is the physical speed of the aircraft with respect to the moving air 
mass, while the calibrated air speed is directly proportional to compressible dynamic 
pressure. The two measures of airspeed are identical at sea level, standard day.  

True Airspeed (standard day) versus Calibrated Airspeed
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Note: At 50,000 feet, calibrated airspeed is about ½ of true airspeed. 

Figure 4.1  True Airspeed versus Calibrated Airspeed 
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4.9 Equivalent Airspeed 

Equivalent airspeed is defined from the incompressible dynamic pressure formula. 

 2 2
00.5 0.5t eq V Vρ ρ= ⋅ ⋅ = ⋅ ⋅  (4.23) 

 0 ;SL
SL

ρρ ρ σ ρ= =  (4.24) 

 2 2
e tV Vσ= ⋅  (4.25) 

 e tV Vσ= ⋅  (4.26) 

For the performance engineer, there is no practical reason to use equivalent airspeed for 
anything. However, structural analysis is often performed in terms of equivalent airspeed 
(since it is a direct function of the incompressible dynamic pressure), so the performance 
engineer needs to be able to convert eV  to parameters that are more useful. Besides equation 
4.26, another useful equation is derived. Since Mach number is 

 ( )
t t

SL

V VM a a θ
= =

⋅
 (4.27) 

And δσ θ= , then 

 ( ) ( )e t SLV V a Mδσ θθ= ⋅ = ⋅ ⋅  

 ( )
e

SL

VM
a δ

=
⋅

 (4.28) 

Therefore, the equation 4.28 is a handy conversion between eV  and M .  Notice that it is not a 
function of temperature.  

4.10 Mach Number from True Airspeed and Total Temperature 

If one has an accurate direct measure of tV , then M  can be computed with the additional 
measurement of total temperature ( tT ). The direct tV  measure could come from laser 
velocimetry. For example:  

 
288.15t SL

TV a M
 

= ⋅ ⋅  
 

 (4.29) 
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( )
( )

288.15

661.48
tV

M
T

⋅
=

⋅
 (4.30) 

Recalling the total temperature equation 4.18, ( )21 0.2tT T M= ⋅ + ⋅  and solving for T : 

 ( )21 0.2
tTT

M
=

+ ⋅
 (4.31) 

Then, one would iterate between the andM T  equations (4.30 and 4.31). An initial estimate of 
standard day might be chosen for the initial value of T  for the iteration. 

In this case, M  is a function of ambient temperature (T ). This is due to the way we have 
chosen to compute M using a measurement of tV . At the time of this writing, the technology 
to directly measure true airspeed was not generally available so one must rely on computing 
M  from total ( tP ) and ambient ( P ) pressure measurements.  

4.11 Airspeed Error Due to Error in Total Pressure 

An error analysis was presented at the end of the altitude section. That error analysis 
showed the effect of an error in ambient pressure on pressure altitude. A similar analysis can 
be performed for an error in total pressure and its effect on the calculation of true airspeed.  
Figure 4.2 shows that effect for an error of 0.001 in. Hg in the total pressure measurement.  

Effect of 0.001 In-Hg Error in Total Pressure
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Figure 4.2  True Airspeed Error for 0.001 in. Hg Error 
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We have summarized the functional relationships derived in the altitude and airspeed 

sections as functions of three basic measurements: total pressure ( tP′ ), ambient (or static) 
pressure ( P ), and total temperature ( tT ). 

a. ( )CH f P=  pressure altitude, 

b. ( )C CV f q=  calibrated airspeed, 

c. C tq P P′= −  compressible dynamic pressure,  

d. ( , )tM f P P′=  Mach number. Note that Mach number is obtained without a 
measurement of temperature, 

e. ( , )tT f T M=  ambient temperature, and 

f. ( , )tV f M T= true airspeed. 
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5.0 LIFT AND DRAG 

5.1 Introduction  

The aerodynamic force axis system used for aircraft performance is defined by the true 
airspeed vector. Assuming zero sideslip angle (β ), the force parallel to true airspeed ( tV ) is 
the retarding force drag ( D ). Octave Chanute in his 1897 book, Progress in Flying Machines 
(Reference 5.1), uses the terminology resistance for what we now refer to as drag. The force 
perpendicular to the true airspeed vector is the lift ( L ) force. 

5.2 Definition of Lift and Drag Coefficient Relationships   

Lift and drag are referenced to incompressible dynamic pressure and a reference area so 
that the coefficients are nondimensional. In aircraft applications, the area is a reference wing 
area. The constants in the following equations are derived from the 1976 U.S. Standard 
Atmosphere (which are the same as in the 1962 U.S. Standard Atmosphere below 65,000 
feet). The lift and drag coefficients are defined as follows: 

 ( )/DC D q S= ⋅  drag coefficient (5.1) 

 ( )/LC L q S= ⋅  lift coefficient (5.2) 

where: 

D  = drag (pounds), 
L  = lift (pounds), 
q  = incompressible dynamic pressure (pounds/feet²), and 
S  = reference wing area (feet²). 

Defining q : 

 2 20.5 0.7tq V P Mρ= ⋅ ⋅ = ⋅ ⋅  (5.3) 

To show how the above equivalence is developed, we use formulas we previously 
derived. 

a. ( )
P

R Tρ = ⋅ , 

b. tV R T Mγ= ⋅ ⋅ ⋅ , and 

c. ( ) ( )2 20.5 0.5 0.5 1.4 0.7t
Pq V R T M M P M

R T
ρ γ= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅

⋅
. 
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Figure 5.1 illustrates the difference between the compressible ( Cq ) and incompressible 
( )q dynamic pressure.  
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Figure 5.1  Ratio of Compressible to Incompressible Dynamic Pressure 

More convenient forms for DC  and LC  are as follows: 

 2116.2166P δ= ⋅  (usually rounded to 2116.22) (pounds per ft2) 
 2 20.7 2116.22 1481.3516q M Mδ δ= ⋅ ⋅ ⋅ = ⋅ ⋅  (5.4) 

 ( )20.00067506DC D M Sδ= ⋅ ⋅ ⋅  (5.5) 
 (The constant is usually rounded to 0.000675) 

A drag coefficient of 0.0001 is defined as one drag count.  

 ( )20.00067506LC L M Sδ= ⋅ ⋅ ⋅  (5.6) 

5.3 The Drag Polar and Lift Curve 

The drag polar and lift curve are usually presented as a function of lift coefficient and 
Mach number as follows:  

a. ( , ) drag polarD LC f C M= , and 

b. ( , ) lift curveLf C Mα = . 

This is typically for a reference longitudinal center of gravity and Reynolds number or altitude. 
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5.4 Reynolds Number 

Reynolds number is defined as follows:  

 tV lRN ρ
µ
⋅ ⋅=  (5.7) 

where: 

RN  = Reynolds number, 
l  = characteristic length (feet) ( l  is usually the MAC [mean aerodynamic chord]), 

and 
µ  = viscosity (slugs/[feet sec]). 

To compute viscosity, we used Sutherland’s Law, which is a relationship for µ  in terms 
of ambient temperature.  We define an index that is a ratio of Reynolds number to the 
Reynolds number at standard day, sea level at a given Mach number. 

 
( )

2

110
398.15
T

RNI δ
θ

 +  = ⋅   
  

 (5.8) 

(Note that if one were to insert standard day, sea level  
values into the RNI  equation you would get 1.00.) 

where: 

RNI  = Reynolds number index. Then, 

 (7.101 6)RN E M l RNI= + ⋅ ⋅ ⋅  (5.9) 

For a characteristic length ( l ) of 1.0, Table 5.1 gives a sense of the magnitude of RN . 
The numbers used are for standard day.  

Table 5.1 
REYNOLDS NUMBER VARIATION WITH MACH NUMBER AND ALTITUDE 

Mach 
Number 

Altitude 
(ft) 

 
δ  

T  
(deg K) 

 
θ 

 
RNI  

/RN l  
(106/ft) 

CV  
(knots) 

0.10 0 1.0000 288.15 1.0000 1.0000 0.7101 66.1 
0.20 0 1.0000 288.15 1.0000 1.0000 1.4202 132.3 
0.60 0 1.0000 288.15 1.0000 1.0000 4.2606 396.9 
1.00 0 1.0000 288.15 1.0000 1.0000 7.1010 661.48 
1.20 0 1.0000 288.15 1.0000 1.0000 8.5212 793.8 
0.60 30,000 0.2970 228.71 0.7937 0.4010 1.7985 223.0 
1.00 30,000 0.2970 228.71 0.7937 0.4010 2.8474 390.0 
1.60 30,000 0.2970 228.71 0.7397 0.4010 4.5559 643.0 
0.60 60,000 0.0708 216.65 0.7519 0.1027 0.4377 110.0 
1.00 60,000 0.0708 216.65 0.7519 0.1027 0.7294 196.6 
1.60 60,000 0.0708 216.65 0.7519 0.1027 1.1671 340.9 
2.00 60,000 0.0708 216.65 0.7519 0.1027 1.4588 430.0 
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3.00 60,000 0.0708 216.65 0.7519 0.1027 2.1882 626.9 
The drag coefficient due to skin friction is typically as much as 70 percent of minimum 

drag coefficient and is a significant factor in the corrections to the drag polar. It is typical that 
the Reynolds number correction is on the order of 1 drag count (0.0001 DC ) per 2,000 feet of 
pressure altitude. This is also a function of temperature, which cannot be ignored. For 10 
degrees K off standard day, typically, a 1-drag count effect can be encountered. 

5.5 Skin Friction Drag Relationships 

The following empirical flat plate relationships were developed by Ludwig Prandtl and 
others. In Incompressible Aerodynamics (Reference 5.2), equation 5.10 is a turbulent skin 
friction drag formula attributed to Schlichting.  

 2.58
10

0.455
(log )fC

RN
=  (5.10) 

Effect of Mach number: 

 ( ) 0.6521 0.144f compressible fC C M
−

= ⋅ + ⋅  (5.11) 

All of the sample problems in this text used equations 5.10 and 5.11.  

 wet
D f

SC C
S

 = ⋅ 
 

 (5.12) 

An earlier friction drag equation is one developed by Prandtl and is shown in equation 5.13. 

 
5

0.074
fC

RN
=  (5.13) 

A laminar flow empirical formula was developed by Blasius and shown in equation 5.14.  

 1.328
fC

RN
=  (5.14) 

A transition formula between laminar and turbulent is attributed to Prandtl and Gebers 
and shown in 5.15. 

 
5

0.074 1,700
fC

RNRN
= −  (5.15) 

Equations 5.10 and 5.13 through 5.15 are plotted versus the logarithm to the base 10 of 
Reynolds number in Figure 5.2. 
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Empirical Skin Friction Drag Relationships
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Figure 5.2  Skin Friction Drag Relationships 

5.6 Idealized Drag Due to Lift Theories  

The following idealized theoretical drag due to lift models can be found in numerous 
aeronautical engineering textbooks listed in the Bibliography. One of the best textbooks (in 
the author’s opinion) titled, “Wing Theory” (Reference 5.3), was written by a pioneer in the 
wing theory field, R.T. Jones.  

a. Subsonic 1M <<  

Elliptic Wing Theory 

 
22

21
L

L
L D

CC C
AR

AR

π α
π

⋅= ⋅ =
⋅ + 

 

 (5.16) 

Transonic 1M ≈  

(1) Slender Body Theory 

 
22

2 L

L
L D

CC AR C
AR

π α
π
⋅= ⋅ ⋅ =
⋅

 (5.17) 

Supersonic 1M >  
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(1) Thin Wing Theory 

 
2

2

2

4 1
41 LL D L L

MC C C C
M
α α⋅ −= = ⋅ = ⋅
−

 (5.18) 

All of the above are idealized and are presented only for general trends. One idealization 
made is symmetry (i.e., wing is uncambered and at zero incidence angle.) 

5.7 Air Force Flight Test Center Drag Model Formulation 

The following equations are drag model formulations that have been proven at the 
AFFTC to quite adequately curve fit actual flight test data. For a given Mach number and 
RN : 

 ( ) ( )2 2
min min1 2D D L L L LbC C K C C K C C= + ⋅ − + ⋅ −  (5.19) 

where: 

2 0K =  when L LbC C< . 

The 1K  term in the drag polar model above is the pure parabola portion. The 2K  term is 
zero below a ‘break’ LC  and therefore, contributes nothing to the model until the lift 
coefficient exceeds this break lift coefficient. The break lift coefficient could be thought of as 
the point where flow separation begins and the drag model becomes nonlinear.   

5.8 The Terminology ‘Drag Polar’ 

The terminology ‘drag polar’ was first used by Eiffel. That historical note is found in 
Introduction to Flight, Third Edition (Reference 5.4), by John D. Anderson. However, a 
second source, lists Otto Lilienthal as the ‘inventor’ of the drag polar (a.k.a., a polar plot or a 
polar diagram). The term ‘polar’ is a reference to polar coordinates. A given point on a 
Cartesian (x-y) plot can be defined by a radius and an angle. Figure 5.3 shows two drag 
models plotted. The first drag model is a pure parabola. This is the same model used in the 
sample performance model section of this handbook for 0.8M = . The second drag model 
represents that parabolic model plus a deviation from the pure parabola.  
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Figure 5.3 Drag Polar 

A second-order parabola reasonably represents drag polar data only up to the point where 
flow separation begins. A second parabola that adds to the first after the start of flow 
separation has been quite successful in curve fitting AFFTC drag model formulations. The 
equation for this specific parabolic model is equation 5.20 and the equation for the nonlinear 
model is equation 5.21 (modified by 5.22). 

 ( )20.02 0.132 0.06D LC C= + ⋅ −  (5.20) 

 ( ) ( )2 20.02 0.132 0.06 0.2642 0.60D L LC C C= + ⋅ − + ⋅ −  (5.21) 

 ( )0.60 0 for 0.60L LC C− = <  (5.22) 

We can plot the ratio of lift to drag, which is the same as the ratio of lift coefficient to 
drag coefficient. 

 L

D

CL
D C=  (5.23) 

Figure 5.4 presents this lift-to-drag versus lift coefficient for both the linear and the 
nonlinear model. This model is a rough approximation to an actual F-16A drag polar at 

0.8M = .  As Figures 5.3 and 5.4 show, the drag grows substantially after the lift coefficient 
increases beyond 0.6.  
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L/D versus Lift Coefficient
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Figure 5.4  Lift-to-Drag Ratio versus Lift Coefficient 

Very roughly, maximum thrust stabilized turns occur around 0.8 lift coefficient. The 
aircraft has an angle-of-attack limiter, which corresponds to a lift coefficient of around 1.5. 
At this limit lift coefficient, this model has the following values for drag coefficient:  

a. 1.50LC = , and    

b.  0.5077DC = . 

These are reasonable values. Let’s do a sample calculation. Assume an airplane gross 
weight of 20,000 pounds, a pressure altitude of 30,000 feet, and a Mach number of 0.80. 
Ignore the thrust component in lift and drag coefficient. The F-16A reference wing area is 
300 ft2. The pressure ratio (δ ) at 30,000 feet is 0.297. Solving for lift and drag from 
equations 5.5 and 5.6: 

 
2 21.5 0.297 0.8 300. 126,720.

0.000675 0.000675
LC M SL δ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= = =  (5.24) 

 
2 20.5077 0.297 0.8 300. 42,890.

0.000675 0.000675
DC M SD δ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= = =  (5.25) 

For our 20,000-pound aircraft (ignoring thrust component), the normal load factor can be 
calculated as follows: 
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126,720.126,720. 6.34 g's
20,000.z t zL N W N= ⋅ = → = =  

Let’s say that someone told us that the aircraft could sustain 4.5 g’s in maximum 
afterburner at these conditions. Since thrust equals drag in a sustained (or thrust-limited) turn, 
we can calculate the drag by first calculating the lift coefficient. 

 
2 2

0.000675 0.000675 4.5 20,000. 1.07
0.297 0.8 300.

z t
L

N WC
M Sδ

⋅ ⋅ ⋅ ⋅= = =
⋅ ⋅ ⋅ ⋅

 (5.26) 

From the drag polar equation (5.21), the drag coefficient comes to 0.2130. Solving for 
drag (which is equal to net thrust): 

 
2 20.2130 0.297 0.8 300. 17,994.

0.000675 0.000675
DC M SD δ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= = =  (5.27) 

At the maximum lift point, the excess thrust is: 

 17,994. 42,890. 24,895.ex nF F D= − = − = −  (5.28) 

That would be a longitudinal load factor of greater than a -1 g. The deceleration rate in 
knots per second comes to: 

 
0

24,895. 1.25
20,000.

t
x

t

VhN V g
−= = − = +

&&  (5.29) 

Assuming all the negative excess thrust is in deceleration (constant altitude slow down 
turn): 

 ( ) ( )2
ft1.25 32.174 sec knots23.8 secft

sec1.6878 knot

tV
− ⋅

= = −
 
 
 
 

&  (5.30) 
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6.0 THRUST 

6.1 Introduction 

We will leave it to numerous other documents to discuss in detail the overall topic of 
propulsion. In this text, we are concerned just with the measurement of thrust. We will discuss 
turbine engines and propeller-driven piston engines. The term measurement is a misnomer, since 
in-flight thrust is a calculation based upon a number of separate measurements. Only on the 
ground, either in an engine cell or during a static thrust run, do we actually measure thrust using 
load cells. We will start by giving the basic principles of turbine engine thrust.  

Figure 6.1 represents a turbojet engine. Other turbine engine types include low- and  
high-bypass ratio turbofans.  A turbofan engine has two separate turbine sections: a high pressure 
section which drives the compressor, and a low pressure section which drives the fan. The air 
flowing through the fan, referred to as bypass airflow, can be mixed with the core airflow 
following the turbine, or it can be exhausted separately. Bypass ratio is the ratio of bypass to core 
airflow. In addition, an afterburner (additional fuel added after the turbine section) may be added 
for additional takeoff or maneuvering thrust. Engines that are more exotic include ramjet types, 
as well as variable cycle engines, where the bypass ratio varies with flight conditions and/or 
power level.  

Air enters the engine at the face of the diffuser (Figure 6.1), the inlet. The usual station 
designation for the engine face is station two. The numerical designation of the exit plane varies 
with the engine complexity, so we will simply use a subscript-e (e for exit). 

 

                             
Figure 6.1  Turb

 0t tV V= = true 
 

2 0t r tP Pη= ⋅  (pounds/ft2) tota

where: 

0   1   2 4 5 6 
 3
 49

 
ine Engine Schematic 

airspeed (ft/sec) 
l (average) pressure at station 2 (6.1) 
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rη  = inlet recovery factor (addressed in more detail later), and 

0t
P  = free stream total (average) pressure (pounds/ft2). 

 ( )0

3.521 0.2tP P M= ⋅ + ⋅ ( pounds/ft2) (6.2) 

where: 

P =ambient pressure (pounds/ft2). 
 

Note: All of the velocities and pressures are integrated average values.  

6.2 The Thrust Equation 

The net propulsive force on the vehicle is called net thrust ( nF ). The basic thrust equation is 
gross thrust ( gF ) minus ram drag ( rF ). The gross thrust, in layman’s terms, is thrust out the 
back. Ram drag is the result of slowing the air from free stream to near zero speed at the inlet. 
The term ( )e eA P P⋅ −  in the equation for gross thrust, 6.4 below, is the result of the pressure at 
the exhaust plane being higher, in most cases, than the ambient pressure. However, this is 
generally a small term compared to the ( )a f eW W V+ ⋅&  term.    

 n g rF F F= −  (6.3) 

 ( ) ( )g a f e e eF W W V A P P= + ⋅ + ⋅ −&  (6.4) 

 r a tF W V= ⋅&  (6.5) 

where: 

aW& = airflow rate (pounds/sec) through the engine,  

fW = fuel flow (pounds/sec),  

eV = exit velocity (ft/sec) (average), 

eP = pressure (average) across exit plane (pounds/ft2), and 

eA = cross sectional area of the exit nozzle (ft2). 
 
For turbofan engines an additional pressure times area term must be added to equation 6.4 

when the fan thrust is exhausted separately. Previously defined was the fuel flow ( fW ), however, 
now we will think of it in units of pounds per second to be consistent with the airflow rate. Note 
that the total mass flow into the engine is airflow, while exiting the engine mass flow is airflow 
plus fuel flow. A more precise engine thrust computation would take into account various bleed 
airs that extract air off the engine for cooling and other purposes.  
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The engine manufacturer will often provide an engine in-flight thrust deck a computer 
program with numerous inputs and outputs on engine performance and operating characteristics. 
The terminology deck is left over from when this computer program was a stack of punched 
computer cards.  

 

6.3 In-Flight Thrust Deck 

The engine manufacturer-provided in-flight thrust deck would vary in complexity. For the 
complex augmented turbofans on the F-15 and F-16 engines, built by Pratt and Whitney and 
General Electric, the decks are many thousands of lines of computer code plus extensive data 
table lookups. These computer programs are developed using proprietary prediction methods 
supplemented by engine test cell data. For the performance engineer, the deck is a black box with 
numerous instrumentation measurement inputs. The inputs fall into two categories:  

a. Flight conditions: Mach Number ( M ), pressure altitude ( CH ), and ambient temperature 
(T ). 

b. Engine parameters: fuel flow, pressure, temperature, and fan and compressor rpm. The 
engine rpm’s are the rotation rates of the rotating components. A turbojet engine may have just a 
single rpm. A turbofan engine will have more than one turbine section, rotating at different 
speeds. The airframe manufacturer will add options to the deck to account for installation effects 
such as inlet spillage drag, airflow bleeds, and scrubbing drag.  

6.4 Status Deck 

The status deck, or prediction deck, predicts the performance (or status) of the engine usually 
with flight conditions and throttle position (or power lever angle). In addition, fuel flow or rotor 
speed may be input. This deck may contain many of the same components as the thrust deck. The 
status deck will predict the pressure, temperature, rpm, and fuel flow that are inputs to the thrust 
deck. Most importantly, the status deck also predicts thrust, and in the case where fuel flow is not 
input, also fuel flow. In addition, in some cases the status deck could have rpm and fuel flow as 
inputs and then would become an in-flight thrust deck.  

6.5 Inlet Recovery Factor 

The inlet recovery factor ( 1.0rη ≤ ) is the total pressure loss factor at the engine inlet face. 
Gross thrust will be degraded directly proportional to the reduction of rη below its maximum 
value of 1.0 (100-percent recovery). The terminology recovery refers to how much of the free 
stream total pressure the engine inlet is able to recover. At subsonic conditions ( 1.0M < ), the 

rη is typically quite close to 1.0. The recovery factor can be computed using the total pressure 
formula below. By measuring the total pressure in the inlet, then we can compute the recovery 
factor. The total pressure varies significantly over the face of the inlet. This pressure variation is 
called distortion. Computing an average total pressure requires several pressure measurements 
performed all across the inlet. This poses two problems. First, we would disturb the flow in the 
inlet. This violates the most fundamental rule of instrumentation do not affect what you are 
measuring by the act of measuring it. The second problem is components of these inlet rakes may 
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break off in the inlet, causing engine damage or failure. At supersonic speeds, the inlet recovery 
factor becomes less than 1.0 due to shock waves in the inlet. In a normal shock inlet, this 
recovery factor is about what one would see across an ideal normal shock. The formula for that is 
the same as for the normal shock relationship for total pressure measurement in a nose boom. 
From the Rayleigh supersonic Pitot equation: 

 
( )2

7
2.52

166.9216
7 1

t
MP P

M

 
 = ⋅ ⋅
 ⋅ − 

 (6.6) 

The free stream total pressure is just the subsonic formula. 

 
0

3.521 0.2tP P M = ⋅ + ⋅   (6.7) 

Then, the recovery factor is the ratio of these two: 

 2

0

t
r

t

P
Pη =  (6.8) 

Figure 6.2 is a plot of this relationship. 
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Figure 6.2  Normal Shock Recovery Factor 

The significance of Figure 6.2 is that for Mach numbers above approximately 1.6, the 
pressure losses become quite large (greater than 10 percent). The F-16 has a normal shock inlet 
and at speeds above 1.6; the actual inlet recovery is modeled quite accurately by the normal 
shock equation. The F-15, in contrast, has a series of inlet ramps, which turn the flow through 
oblique shocks as shown in Figure 6.3.  
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Figure 6.3  F-15 Inlet Schematic 

The net effect of this oblique shock inlet is that at Mach number = 2.0, the inlet recovery 
factor is about 0.92 versus only 0.72 for the normal shock inlet. The downside is the increased 
complexity of the inlet producing an increase in aircraft weight. At subsonic speeds, the recovery 
factor of the F-15 oblique shock inlet is slightly less than that for the F-16. This is probably due 
to the losses in turning the flow.  

6.6 Thrust Runs 

Checks of installed net thrust can be performed at zero speed using a thrust stand. A thrust 
stand may be as simple as a cable with a load cell. The thrust stand gives the only direct 
measurement of installed thrust. In contrast, in-flight thrust is a computation based upon a large 
number of measurements and a computer model of the engine to predict or estimate the thrust. 
From the measured thrust stand values, one can compare to values of thrust from both the in-
flight thrust and status decks. This test most certainly should be performed on all performance 
test programs.  

The most significant test points would be the fixed throttle points (IDLE, MIL and MAX or 
whatever your fixed throttle points are called). The importance of these points is that the direct 
comparison to both the in-flight and status decks is possible. Intermediate throttle position data 
points are of less value, since the throttle positions are not distinct and repeatable. The 
suggestion, since thrust stand time is costly, is to concentrate on getting a number of fixed 
throttle data points and ignore the intermediate points. A good test procedure might be to start the 
tests in the early morning when it is relatively cold. Get a few data points for the three fixed 
power points. For instance, start the engine(s), collect data at IDLE, then go to MIL, then to 
MAX, back to MIL, back to IDLE, and repeat at least once. Collect continuous data to observe 
stabilization times. However, it should not be necessary to collect the excessive amounts of data 
(10+ minutes at one condition would be considered excessive) that some propulsion analysts may 
desire. Going up and then back down in throttle determines if there is any thrust hysteresis (get a 
different value if increasing throttle versus decreasing throttle). 

After collecting that data in early morning, proceed to shut the aircraft engines down and 
wait. Refuel if necessary. After the temperature increases some by late morning, repeat the whole 
procedure. Finally, do the process a third time in the afternoon. This will give you a range of 
ambient temperatures. During the summer at Edwards AFB, that range of temperature could be 
as much as 50 degrees F (see Appendix C for average surface temperatures). In 1 day of testing, 
you should get IDLE, MIL and MAX data at three temperatures.  
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6.7 Thrust Dynamics 

In an engine test cell, the engine manufacturer will perform throttle transients. This data can 
be used to develop a thrust dynamics model for use with a takeoff simulation. The typical aircraft 
is unable to stabilize at the start of a takeoff with maximum thrust. Therefore, a throttle transient 
is necessary to initiate the takeoff. Figure 6.4 is an example of some actual throttle transient data 
taken on the AFFTC thrust stand.  
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Figure 6.4  Thrust Dynamics from an Air Force Flight Test Center Thrust Stand 

The thrust stand at the time this data was taken (late 1980s) had a 1 sample per second 
sample rate. In addition, it is unknown how much of the lag is due to lag in the instrumentation. 
However, using this thrust stand lag data allowed us to match the actual time to liftoff data very 
accurately. As an example, for this aircraft, the time to lift-off at one particular condition was 
41.5 seconds using the simulation. For the same simulation, but assuming 100 percent thrust at 
time zero, the time to lift-off was computed to be 39.1 seconds (or over 5 percent). The change in 
distance to lift-off, for the same lift-off speed, was less than 1 percent. To clarify, the effect of the 
engine lag occurs in the early portion of the takeoff ground roll, affecting time to takeoff much 
more than distance to liftoff. This becomes significant when considering minimum interval 
takeoffs, for instance. 

6.8 Propeller Thrust 

In the examples, it was assumed that thrust was derived from a jet engine. We do not wish to 
assume that is always the case. The equations of motion are just as applicable to an aircraft 
powered by an engine that drives a propeller. The common unit of output power of an engine is 
horsepower. In the English system, 1 horsepower was defined by James Watt in the 1700s to 
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equal 33,000 foot-pounds of work per minute. In aircraft applications, we will usually divide by 
60 to get 550 foot-pounds of work per second. As with jet engines, an engine ‘rating’ will usually 
not include friction losses and transmission losses to the propeller. We start with an indicated 
horsepower ( IHP ), which is some fraction (up to maximum power of 100 percent) of the rating. 
Then, reduce that by a factor to account for losses to the propeller (λ ). This factor can be 10 
percent or more. That produces the shaft horsepower or brake horsepower ( BHP ). 

 ( )BHP IHPλ= ⋅  (6.9) 

Then, there is the fact that the propeller cannot possibly convert 100 percent of the brake 
horsepower to propulsive force. That factor is the propeller efficiency (η ). The result is thrust 
horsepower (THP ). 

 ( )THP BHPη= ⋅  (6.10) 

Each propeller manufacturer will usually provide propeller efficiency charts from which one 
can estimate η  as a function of propeller rpm, pitch, and flight conditions. If such charts are not 
available, one can perhaps find similar charts for similar propellers. If all else fails, assume a 
value like 0.80 as a starting point in developing a propulsion model from flight test.  

From the definition of horsepower, the equation for thrust horsepower in terms of thrust and 
true airspeed is as follows:  

 
550
n tF VTHP ⋅= (where tV  has units of feet/sec) (6.11) 

 550
n

t

THPF
V
⋅=  (6.12) 

Obviously, equation 6.12 cannot be used at zero speed. For takeoff performance, the static 
thrust could be measured on a thrust stand. Then at speeds around lift-off, equation 6.13 could be 
used. A thrust model might be just a linear interpolation of the thrust stand value and the lift-off 
value versus speed. The AFFTC thrust stand is grossly underutilized for this purpose.  

6.8.1 The Reciprocating Engine at Altitude 

For the internal combustion engine, the power output for any given engine speed varies with 
air density (for non-supercharged engines). Using the density ratio (σ ) as the density parameter, 
the thrust horsepower equation as a function of altitude becomes: 

 ( )THP BHPη σ= ⋅ ⋅  (6.13) 

Richard Von Mises in Theory of Flight suggests that some experimental data indicates that 
the σ  factor would have an exponent ( n ) greater than 1. One particular set of data gave a value 
of 1.29. Then, for that particular set of data, equation 6.13 becomes equation 6.14. 

 ( ) ( )1.29nTHP BHP BHPη σ η σ= ⋅ ⋅ = ⋅ ⋅  (6.14) 
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For instance, for an engine at 20,000 feet pressure altitude on a standard day: 

a. 0.4595δ = , 

b. 0.8625θ = , 

c. 0.5328δσ θ= = , 

d. 1.29 0.4438σ = , and 

e. 1.29
0.833σ

σ = . 

Hence, the altitude degradation factor for this engine is 16.7 percent greater than what would 
be predicted by a straight density ratio factor.  
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7.0 FLIGHT PATH ACCELERATIONS 

7.1 Airspeed-Altitude Method  

The classical method of determining the aircraft flight path acceleration is to differentiate 
airspeed and altitude using the energy altitude relationship, as developed in the axis systems and 
equations of motion section, with a temperature correction to the pressure altitude. 

 ( )
2

02
t

E
VH H

g
= +

⋅
 (7.1) 

 
0

t
E C t s

STD

VTH H V P
T g
   

= ⋅ + ⋅ =   
   

& & &  (7.2) 

 s
x

t

PN
V

=  (7.3) 

where: 

EH  = energy altitude (feet), 
H   = geopotential altitude (feet), 

tV  = true airspeed (feet/sec), 

0g  = acceleration of gravity (32.174 feet/sec²), 

xN  = longitudinal load factor in the flight path (or wind) axis, and 

sP  = specific excess power (feet/sec). 

Note: In this handbook, xN  and zN  are the symbology used to denote flight path axis 
longitudinal and normal load factor, respectively. One can find other sources that use symbology 
of 

wxN and 
wzN  ( w  for wind) or 

fxN  and 
fzN ( f  for flight path). In addition, many textbooks 

(including those listed in the Bibliography) will use simply N  for flight path normal load factor.   

Now, we can compute the excess thrust ( exF ). Excess thrust is the amount of the net thrust 
that is more than the amount needed to achieve equilibrium between net thrust and the drag of the 
aircraft. 

 ex x tF N W= ⋅  (7.4) 

Even if you had zero errors in measured airspeed and altitude, the airspeed-altitude method 
would have a weakness. That weakness is the presence of winds.  You desire to determine the 
actual physical acceleration of the aircraft. By taking derivatives of airspeed, you will invariably 
have some derivative of wind included. Hence, it becomes desirable to obtain the aircraft flight 
path acceleration by some means other than derivatives of true airspeed and pressure altitude. 
The GPS yields an alternative method. 
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7.2 GPS Method  

A GPS unit will typically provide groundspeed ( gV ), track angle ( gσ ), and altitude ( h ). The 

groundspeed is the horizontal component of the GPS speed. The parameter h&  is the GPS vertical 
velocity. One could simply use the same equations as for the airspeed-altitude method. One catch 
is the track angle is not the same as the aircraft heading angle (ψ ), due again to the wind. If one 
had the additional parameter of heading angle (and assuming zero sideslip) available, then a 
flight path groundspeed ( gfV ) could be computed as follows: 

 cos( )gf g gV V σ ψ= ⋅ −  (7.5) 

However, the above speed is the horizontal component of flight path inertial speed so a 
transformation is required.  

 2 2
f gfV V h= + &  (7.6) 

Then, just simply insert the appropriate GPS-derived accelerations into the airspeed-altitude 
equations.  

An alternative to using a heading angle, which may not be an available parameter on some 
projects, is to perform a cloverleaf maneuver prior to the test maneuver to derive the winds. The 
cloverleaf maneuver is described in the airspeed calibration section. This would be appropriate 
for constant altitude maneuvers such as accels and turns. Once the two components of wind 
(north and east) are determined, one can compute the groundspeed in the wind axis. The formula 
is as follows:  

 ( ) ( )2 2

gf gN wN gE wEV V V V V= + + +  (7.7) 

7.3 Accelerometer Methods   

There are three different accelerometer methods used to measure flight path acceleration. 
These use either the body axis accelerometer (BAA), the flight path accelerometer (FPA), or an 
INS. The BAA uses a set of accelerometers placed somewhere within the body of the aircraft. 
Ideally, the accelerometers should be at the center of gravity (cg) of the aircraft. Nevertheless, 
practically, the BAA is usually in an instrumentation bay away from the cg. The accelerometers 
are then subjected to body axis rates and corrections need to be made to subtract out rate effects. 
At the time of this writing, the INS has been the primary accelerometer method used at the 
AFFTC. NASA Dryden Flight Research Center, however, uses the BAA method as its primary 
method.  

7.4 Flight Path Accelerometer Method 

The FPA consists of a two-axis accelerometer that is aligned with an angle-of-attack vane. 
The angle-of-attack vane is connected to a nose boom. The longitudinal axis yields the local 
longitudinal acceleration and the normal axis the local normal acceleration. Corrections need to 
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be made to the accelerations for not being at the cg (rate effects) and for being connected to an 
angle-of-attack vane that is not indicating the true angle of attack.  

The flight path accelerometer correction equations (ignoring roll and yaw terms) are as 
follows: 

 2
0cos( ) sin( ) / cos( ) sin( )

i ix x z V t tN N N L g q qα α α α = ⋅ ∆ − ⋅ ∆ + ⋅ ⋅ − ⋅ &  (7.8) 

 2
0cos( ) sin( ) / sin( ) cos( )

i iz z x V t tN N N L g q qα α α α = ⋅ ∆ + ⋅ ∆ + ⋅ ⋅ − ⋅ &  (7.9) 

 t i bbα α α α= + ∆ + ∆  (7.10) 

α i  = measured angle of attack 

 q u lagα α α α∆ = ∆ + ∆ + ∆  (7.11) 

 
( )

1tan
sin( )

V
q

t V t

L q
V L q

α
α

−  ⋅∆ =  − ⋅ ⋅  
 =  pitch rate correction (7.12) 

 uα∆ =  upwash correction (7.13) 

 bbα∆ =  boom bending correction (7.14) 

 lagα∆ =  lag correction (7.15) 

where: 

q  = pitch rate, 

VL  = distance from accelerometer to aircraft cg (positive with the accelerometer forward of 
the aircraft cg), 

tV  = true airspeed, 

ixN = indicated longitudinal load factor, and 

izN = indicated normal load factor. 

Figure 7.1 represents an FPA unit (designated an NBIU [Nose Boom Instrumentation Unit]) 
developed at the AFFTC in the late 1960s.  
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Figure 7.1  Air Force Flight Test Center Nose Boom Instrumentation Unit 

This unit is installed on the AFFTC F-15B Pacer (at the time of this writing). Similar units 
are still being used for flight test in the late 1990s. 

7.5 Accelerometer Noise 

When we use an accelerometer to measure flight path accelerations, we must deal with the 
noise in that data. No matter where one locates an accelerometer in the aircraft, it will be subject 
to substantial quantities of noise. The noise is from structural vibration at relatively high 
frequencies and lower frequency flight dynamic oscillations. Figure 7.2 is an example of some 
actual data from the first flight of the B-1A in December 1974.  The data point was a stabilized 
cruise point. Figures 7.2 and 7.3 represent indicated longitudinal load factor ( xiN ) and normal 
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load factor ( ziN ). The accelerometers were located in an AFFTC NBIU. The data were sampled 
at 64 samples per second. The analog output of the accelerometers was filtered. This filter was a 
4-pole 30 Hz (cycles per second), low-pass Butterworth filter. It is called low pass because it 
passes low frequencies. The 30 Hz is the cutoff frequency of the filter. In this case, the cutoff 
frequency was too high. On the B-1A, the lowest longitudinal vibration modes were less than 10 
Hz. This meant that our performance data had a substantial amount of longitudinal vibration data 
in it.  After the plots is a discussion of the characteristics of this filter. 

B-1A First Flight Data: Flightpath Accelerometer: Indicated Nx
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Figure 7.2  Longitudinal Load Factor – Unfiltered Data 

The mean and standard deviation (sigma) of xiN  are as follows for 58 data points.  

a. Mean = 0.00831 

b. Sigma = 0.01682 

 

Postscript Comment Added – February 2003: The suggested digital filtering in Figures 7.6 
and 7.7 – way more complex than needed for performance data. Even aircraft “dynamic 
performance” maneuvers are very low frequency maneuvers. If one has high sample rate, but 
very noisy data, then just average the data. This author’s suggestion is to average over a time 
span of no less than 0.20 seconds. However, use all the available data samples in the average.    
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B-1A First Flight Data: Flightpath Accelerometer: Indicated Nz
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Figure 7.3  Normal Load Factor – Unfiltered Data 

The mean and standard deviation for the ziN  is as follows for the same 58 time slices:  

a. Mean = 1.0047 

b. Sigma = 0.2257 

Ignoring pitch rate terms, the transformation equation for true flight path longitudinal load 
factor ( xN ) is as follows: 

 cos sinx xi ziN N Nα α= ⋅ ∆ − ⋅ ∆  (7.16) 

where: 

α∆  = upwash angle. 

If xN  was zero for this stabilized cruise point, then the above equation can be used to solve 
for upwash. 

 1tan xi

zi

N
Nα −  ∆ =  

 
 (7.17) 

For this one data sample, the α∆  computes to be: 

( )1 0.00831tan 0.47 deg1.0047α −∆ = =  
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The attenuation of a filter is expressed in terms of decibel (dB). The definition of decibel is as 
follows: 

 0
1020 log

i

EdB E
 = − ⋅  
 

 (7.18) 

where: 

0E  = output, and 

iE  = input. 

By definition, the cutoff frequency is at a 3.0dB = , which is an output over input of 0.708 or 
an attenuation of almost 30 percent.  Figure 7.4 shows the attenuation for a four-pole Butterworth 
filter. 

Four-Pole Butterworth Low-Pass Filter Attenuation
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Figure 7.4  Four-Pole Butterworth Filter Attenuation Characteristics 

At the time, the solution to the noise problem with B-1A flight path accelerometer data was 
to change to filters with a much lower cutoff frequency. The problem with that solution was that 
a filter with a low cutoff frequency also introduced substantial phase (time) lag. For this filter, 
Figure 7.5 represents the time lag function versus the frequency ratio. The time delay is defined 
in terms of a parameter called the group time delay ( dgroupt ). The actual time delay ( t∆ ) is 
determined as follows: 

 
2

dgroup

c

t
t

fπ
 

∆ =  ⋅ ⋅ 
 (7.19) 
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where: 

cf  is the cutoff frequency in Hz.  

Four-Pole Butterworth  Low-Pass Filter Group Time Delay
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Figure 7.5  Four-Pole Butterworth Filter Group Time Delay  

At maneuver frequencies less than 0.1 times the cutoff frequency, the group time delay is 
2.60 seconds. A filter with a cutoff frequency of 2.0 was selected to avoid the very low frequency 
first-body bending modes of this very flexible aircraft. Since no dynamic performance maneuvers 
were performed on the B-1A, this was not deemed a problem.  

The actual time delays for the 30 and 2.0 Hz filters compute to the following using the above 
equation. 

a. 0.014 sec for 30ct f Hz∆ = =  

b. 0.207 sec for 2.0ct f Hz∆ = =  

A time lag of 0.2 second can be a source of significant errors for highly dynamic maneuvers 
such as the roller coaster. To avoid a time shift error in accelerometer data, it would be more 
desirable to digitally filter the data. To illustrate this, the xiN  was digitally filtered with two 
different methods. A span of 21 data points was chosen which would include the midpoint and 10 
points on each side of the mid-value. The first was a moving second-order polynomial curve fit. 
The second was a moving average. These are shown in Figure 7.6.  
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Indicated Nx data: Digitally Filtered: 21 Point Span
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Figure 7.6  Longitudinal Load Factor – Filtered Data 

Figure 7.7 plots the moving second-order polynomial fit points. A third-order polynomial 
curve fit of the time history is also shown.  
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Figure 7.7  Third-Order Polynomial Fit of Filtered Longitudinal Load Factor Data 
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Table 7.1 summarizes the mean values and 1-sigma deviations from the mean for the 
different sets of data. 

Table 7.1 
SUMMARY OF STATISTICS FOR LONGITUDINAL LOAD FACTOR 

 Original 
Data 

Moving 
Average 

Second-Order 
Polynomial Moving 

Second-Order Moving 
Minus Third-Order Fit 

Mean 0.00831 0.00853 0.00848 0 
1-Sigma 0.01682 0.00115 0.00233 0.00140 

 
The average value of each of the three methods was identical to three digits (1 milli-g). The 

two digital filtering methods reduced the standard deviation by about a factor of 10. Although 
(for this data set) the simple moving average produced the greatest reduction in standard 
deviation, it is preferable to use the moving second-order polynomial fit. That is because for any 
maneuver where variation in acceleration is not linear, the parabola will match the variation more 
accurately.  

7.6 Inertial Measurement Method  

The INS method involves transforming the earth axis inertial parameters of the INS into the 
aircraft wind (or flight path) axis. Typically, the INS outputs will be velocities and accelerations 
in the north, east, and down direction and a set of angles called Euler angles. The Euler angles are 
pitch, roll, and true heading. The mathematics below will take you through the process to 
compute winds. Once the winds are known, then the transformations into the wind axis are 
performed. 

Define: 

a. θ = pitch attitude, 

b. φ  = roll attitude, 

c. ψ  = true heading angle, 

d. α  = angle of attack, and 

e. β  = sideslip angle. 

7.7 Calculating Alpha, Beta and True Airspeed 

The following matrices are used to transform the true airspeed from the flight path axis ( tV ) 
to the earth axis ( tNV , tEV , and tDV ). The transformation must be performed in the exact order of 

, , , ,β α φ θ ψ .  

Heading (rotate about the z axis [or yaw]) (transform through ψ ) 
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 [ ]
cos sin 0
sin cos 0

0 0 1

ψ ψ
ψ ψ ψ

− 
 =  
  

 (7.20) 

Pitch (rotate about y-axis) (transform through θ ) 

 [ ]
cos 0 sin

0 1 0
sin 0 cos

θ θ
θ

θ θ

 
 =  
 − 

 (7.21) 

Roll (rotate about x-axis) (transform through φ ) 

 [ ]
1 0 0
0 cos sin
0 sin cos

φ φ φ
φ φ

 
 = − 
  

 (7.22) 

Angle of attack (transform through α ) 

 [ ]
cos 0 sin

0 1 0
sin 0 cos

α α
α

α α

− 
 =  
  

 (7.23) 

Sideslip angle (transform through β ) 

 [ ]
cos sin 0
sin cos 0

0 0 1

β β
β β β

− 
 =  
  

 (7.24) 

The matrix summary form of the transformation from the flight path axis true airspeed to the 
true airspeed in the earth axis ( N , E , D ) is as follows: 

 

( )
( )
( )

[ ] [ ] [ ] [ ] [ ] 0
0

gN wN
t

gE wE

gD wD

V V V
V V

V V

ψ θ φ α β

 +      + = ⋅ ⋅ ⋅ ⋅ ⋅   
   

 +  

 (7.25) 

From equation 7.25 we can solve for the winds. 
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 [ ] [ ] [ ] [ ] [ ] 0
0

wN t gN

wE gE

wD gD

V V V
V V
V V

ψ θ φ α β
    
    = ⋅ ⋅ ⋅ ⋅ −     

     
     

 (7.26) 

The equation above is the general matrix formula. During a typical wind calibration, we will 
assume the vertical wind ( wDV ), the sideslip angle (β ), and the bank angle (φ) are equal to zero. 
Equation 7.26 represents three equations with at least five unknowns. The five unknowns are the 
three components of wind ( ),wN wE wDV V and V and α  and β .  

Then the α  calculation reduces to the following: 

 α θ γ= −  (7.27) 

 1sin
t

h
Vγ −  = = 

 
&  flight path angle (7.28) 

 gDh V= − =&  rate of climb (7.29) 

We now wish to perform the reverse transformation; that is, to transform the components of 
true airspeed in the earth axis to the flight path. To transform the components, reverse the order 
of the matrix multiplication and take the transpose of each individual matrix. In this case, the 
transpose is the same as the inverse. To take the transpose of these unique matrices reverse all the 
off-diagonal terms and keep all the diagonal terms the same. For instance, the [ ]Tβ  matrix 
derives from equation 7.24 as follows: 

 [ ]
cos sin 0 cos sin 0
sin cos 0 sin cos 0

0 0 1 0 0 1

T

T
β β β β

β β β β β
−   

   = = −   
      

 (7.30) 

The matrix formula is as follows: 

 [ ] [ ] [ ] [ ] [ ] 0
0

tN t
T T T T T

tE

tD

V V
V
V

β α φ θ ψ
   
   ⋅ ⋅ ⋅ ⋅ ⋅ =   
   
   

 (7.31) 

We can calculate all the velocities in the equation 7.31 using the winds determined during the 
wind calibration (equation 7.26) as follows: 

 tN gN wNV V V= +  (7.32) 

 tE gE wEV V V= +  (7.33) 
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 tD gD wDV V V= +  (7.34) 

 ( )2 2 2
t tN tE tDV V V V= + +  (7.35) 

The airspeed components in the body axis ( , ,x y z ) are calculated in the following matrix 
manner: 

 [ ] [ ] [ ]
bx tN

T T T
by tE

bz tD

V V
V V
V V

φ θ ψ
   
   = ⋅ ⋅ ⋅   
   
   

 (7.36) 

Next, transform the body axis to the flight path axis through angle of attack and sideslip 
angle as follows: 

 [ ] [ ] 0
0

bx t
T T

by

bz

V V
V
V

β α
   
   ⋅ ⋅ =   
   
   

 (7.37) 

Expanding the alpha and beta transpose matrices and writing them out: 

 
cos sin 0 cos 0 sin
sin cos 0 0 1 0 0
0 0 1 sin 0 cos 0

bx t

by

bz

V V
V
V

β β α α
β β

α α

       
      − ⋅ ⋅ =      
      −       

 (7.38) 

 
cos cos sin cos sin
sin cos cos sin sin 0

sin 0 cos 0

bx t

by

bz

V V
V
V

β α β β α
β α β β α

α α

⋅ ⋅     
    − ⋅ − ⋅ ⋅ =    
    −     

 (7.39) 

Multiplying out the above matrix yields three equations from which we will derive formulas 
for α  and β . When complete, these formulas should be the same as presented earlier. In the axis 
systems and equations of motion section, the angles were derived by geometry without the 
following matrix mathematics:  

 cos cos sin cos sinbx by bz tV V V Vβ α β β α⋅ ⋅ + ⋅ + ⋅ ⋅ =  (7.40) 

 sin cos cos sin sin 0bx by bzV V Vβ α β β α− ⋅ ⋅ + ⋅ − ⋅ ⋅ =  (7.41) 

 sin cos 0bx bzV Vα α− ⋅ + ⋅ =  (7.42) 

Equation 7.42 yields a formula for angle of attack. 
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 sin / cos tan bz

bx

V
Vα α α= =  (7.43) 

 1tan bz

bx

V
Vα −  =  

 
 (7.44) 

Inserting the result for bxV  from equation 7.44 into equation 7.40: 

 cos
sinbx bzV Vα

α
= ⋅  

 
2 2cos sincos sin cos

sin sinbz by bz tV V V Vα αβ β β
α α

⋅ ⋅ + ⋅ + ⋅ ⋅ =  (7.45) 

Collecting terms and using the trigonometric identity 2 2sin cos 1α α+ = : 

 cos sin
sin

bz
by t

V V Vβ β
α

 ⋅ + ⋅ =  
 (7.46) 

Now, we will use equations 7.41 and 7.42 to substitute for the term in the square brackets. 
Replace bxV  in 7.41 using 7.42. 

 
2 2cos sinsin cos sin 0

sin sinbz by bzV V Vα αβ β β
α α

− ⋅ ⋅ + ⋅ − ⋅ ⋅ =  

 
( )2 2cos sin

sin cos 0
sin bz byV V
α α

β β
α

 +
 − ⋅ ⋅ + ⋅ =
  

 

 cos
sin sin

bz
by

V Vβ
α β

  = ⋅  
 (7.47) 

Finally, substituting equation 7.47 into equation 7.46: 

 
2cos sincos

sin sinby by tV V Vβ ββ
β β

⋅ ⋅ + ⋅ =  

 sin
by

t
V Vβ =   

 1sin by

t

V
Vβ −  =  

 
 (7.48) 

Compare equations 7.44 and 7.48 to equations 2.11 and 2.12. 

We now wish to perform the reverse transformation; that is, to transform the components of 
true airspeed in the Earth axis to the flight path. To transform the components, reverse the order 
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of the matrix multiplication and take the transpose of each individual matrix. The matrix formula 
is as follows: 

 [ ] [ ] [ ] [ ] [ ] 0
0

tN t
T T T T T

tE

tD

V V
V
V

β α φ θ ψ
   
   ⋅ ⋅ ⋅ ⋅ ⋅ =   
   
   

 (7.49) 

We can readily solve for the true airspeed components from the above. 

The airspeed components in the body axis ( , ,x y z ) are calculated in the following matrix 
manner: 

 [ ] [ ] [ ]
bx tN

T T T
by tE

bz tD

V V
V V
V V

φ θ ψ
   
   = ⋅ ⋅ ⋅   
   
   

 (7.50) 

From true airspeed and the body axis true airspeed components, angle of attack and sideslip 
are computed using equations 7.44 and 7.48. The α   and β  are required in order to transform 
the earth axis accelerations to the flight path axis.  

7.8 Flight Path Accelerations  

To compute the accelerations in the flight path requires first computing the accelerations in 
the N, E, and D axis. Even when the accelerations are available as a direct output of an INS, it is 
desirable to compute the accelerations by taking numerical derivatives of the inertial velocities. 
This is because the accelerations are sensing the high frequency vibrations of the aircraft and are 
usually quite noisy. The typical INS updates at 50 samples per second. If one simply samples the 
velocity data at no more than about 5 samples per second and then takes a derivative, the noise 
will be dramatically reduced. The acceleration formulas are as follows: 

 
( ) ( )

( )
2

gN gN
N

V t t V t t
A t

t
+ ∆ − −∆

=
⋅∆

 (7.51) 

 
( ) ( )

( )
2

gE gE
E

V t t V t t
A t

t
+ ∆ − −∆

=
⋅∆

 (7.52) 

 0

( ) ( )
( )

2
gD gD

D

V t t V t t
A t g

t
+ ∆ − −∆

= −
⋅∆

 (7.53) 

The velocities in the equations 7.51 through 7.53 are the inertial (or ground) speeds, not the 
airspeeds. We are computing inertial accelerations in the N, E, and D axis. However, we will 
later transform these into the wind axis. They are still inertial accelerations, but the components 
in our wind axis system. Note that the down (or z ) component involves subtracting out a gravity 
term. Since the vertical component of acceleration is down, we are actually adding in a gravity 
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term. For instance, at 5 samples per second, the t∆  would be  
0.20 seconds. 

The transformation matrix formulation for accelerations is identical to that for velocities and 
is given below. However, we will put the flight path accelerations on the left side of the equation.  

 [ ] [ ] [ ] [ ] [ ]
xf N

T T T T T
yf E

zf D

A A
A A
A A

β α φ θ ψ
   
   = ⋅ ⋅ ⋅ ⋅ ⋅   
   

  

 (7.54) 

In performance, we normally work with load factors (acceleration over g) rather than the 
accelerations. In addition, in conventional performance the standard sea level value of g ( 0g = 
32.174 feet/sec2) is usually used. There is also a sign change on the normal load factor to account 
for the positive normal load factor convention.  

 
0

0

0

x xf

y yf

z zf

N A g
N A g
N A g

  
   =   

   −   

 (7.55) 

Finally, note that f  designation is dropped for the flight path axis load factors.  

7.9 Accelerometer Rate Corrections  

The following corrections to accelerometers are presented without derivation. Assume we 
have rate gyros, which give us roll rate, pitch rate, and yaw rate in the body axis. Define these as 
follows: 

a. ( ) ( )roll rate rotation about  axis right wing downp x= − + ; 

b. ( ) ( )pitch rate rotation about axis pitch upq y= − + ; and 

c. ( )yaw rate (rotation about axis) nose rightr z= − + . 

Assume that the accelerometers are at distances ,x y zl l and l  from the cg of the aircraft. The 
x distance ( xl ) is positive forward, y distance ( yl ) is positive out the right wing, and the z 
distance ( zl ) is positive down. If the non-corrected body axis accelerations are designated with a 
sub- i  designation, then the matrix correction equations are as follows:  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2

i

i

i

xb xb x

yb yb y

zb zb z

q r r p q q p rA A l
A A r p q p r p q r l
A A lq r p p q r q p

 + − ⋅ − + ⋅          = + − + ⋅ + − ⋅ ⋅                 − − ⋅ + ⋅ − + 

& &

& &

& &

 (7.56) 
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Note: A sign change when computing normal load factor. 

a. 
0

zb
zb

AN g= −  

This author prefers to rate correct the velocities, then take numerical derivatives to compute 
accelerations. Then, one would not rate correct the resultant accelerations. 

7.10 Velocity Rate Corrections  

Rate corrections to the body axis velocities in the matrix format are presented in equation 
7.57. These will have been accomplished by axis transformations through , andψ θ φ , in that 
order. Again, the i  designation will be non-corrected velocities.  

 
0

0
0

i

i

i

bx bx x

by by y

bz bz z

V V r q l
V V r p l
V V q p l

  −     
     = + − ⋅      

      −      

 (7.57) 

7.11 Calculating p, q, and r 

In the case where the Euler angles ( , ,ψ θ φ ) are given, we can compute the body axis rates 
using the following formulas. 

 sinp φ ψ θ= − ⋅& &  (7.58) 

 cos cos sinq θ φ ψ θ φ= ⋅ + ⋅ ⋅& &  (7.59) 

 cos cos sinr ψ θ φ θ φ= ⋅ ⋅ − ⋅&&  (7.60) 

7.12 Euler Angle Diagram 

Figure 7.8 illustrates the Euler angles. This Euler angle diagram pictorially illustrates the 
order of transformation. Starting with the aircraft heading north, a transformation is performed 
(positive east) through the heading angle (ψ ). Then, the aircraft is pitched (positive up) through 
the pitch attitude (θ ). Finally, the aircraft is rotated (positive right wing down) through the roll 
angle (φ ). It is critical that the order of rotation is just as described ( , ,ψ θ φ ), otherwise, one 
would get a different result. 
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Figure 7.8  Euler Angles 

 

8.0 TAKEOFF 

8.1 General 

This section will present the theory of takeoff and landing for conventional aircraft. For this 
handbook, conventional aircraft would be any aircraft with a main gear, a nose gear, and a single 
source of thrust at some angle of incidence ti . Therefore, ‘conventional’ could include some 
aircraft that are considered STOL (Short TakeOff and Landing). One could derive equations that 
are more complex for a VSTOL (Vertical or Short TakeOff and Landing).  

8.2 Takeoff Parameters  

Let us define the following forces, distances, angles and coefficients as depicted in Figure 
8.1. (Not shown on the drawing [to avoid clutter] are gross thrust [ gF ] and the engine inlet [or 
propulsive] drag [ eF ]). 

a. bwD  = drag of the aircraft body and wing - along the aircraft flight path axis. During the 
ground roll, the flight path will be parallel to the runway. 

b. tD  = drag of the aircraft tail - acts along the aircraft flight path (this term is often lumped 
into the body drag for aircraft without a T-tail). 

c. 1L  = lift of the wing - acts perpendicular to the flight path. 

d. 2L  = lift of the tail - also acts perpendicular to the flight path. 

e. tW  = gross weight - acts through the center of gravity of the aircraft. 
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f. nF   = net thrust acting parallel to the flight path. 

g. 1F  = load on the nose gear (perpendicular to the runway). 

h. 2F  = load on the main gear (perpendicular to the runway). 

i. 1X  = distance from the nose gear to the aircraft center of gravity. 

j. 2X  = distance from the main gear to the aircraft center of gravity. 

k. 1XL  = distance from the center of gravity to action point of the wing lift (aerodynamic 
center of the MAC [Mean Aerodynamic Chord]). 

l. 2XL  = distance from the wing lift point to the tail lift action point. 

m. 1Z   = height of the body axis of the aircraft above the ground plane.  

n. 2Z  = height of the tail center of lift and drag above the aircraft body axis. 

o. θ  = aircraft pitch attitude (angle between X-body axis and horizontal). 

p. rwθ  = runway slope. 

 
Figure 8.1  Takeoff and Landing Forces and Angles 

Using the above diagram, we can formulate the equations of motion for the aircraft during the 
ground roll. The equations are the same for either a takeoff or a landing.  

Requiring the summation of forces in the X-axis to be zero: 

 cos( )g t e rw exF i F D F Fθ⋅ + − = + +  (8.1) 
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where: 

D  = total aerodynamic drag, 

rwF  = total runway resistance = runway friction plus runway slope effect, and 

exF  = excess thrust (positive forward). 

 bw tD D D= +  (8.2) 

 1 1 2 2 sin( )rw t rwF F F Wµ µ θ= ⋅ + ⋅ + ⋅  (8.3) 

where: 

1µ  = coefficient of friction associated with the nosewheels, and 

2µ  = coefficient of friction associated with the main wheels. 

 ex x tF N W= ⋅  (positive forward) (8.4) 

where: 

xN   = longitudinal load factor. 

 0/x xN A g=  (8.5) 

 x gA V= &  (8.6) 

where: 

gV  = groundspeed. 

Note that the longitudinal load factor definition on the ground includes only the velocity 
derivative term. In the air, the gravity component is included.  On the ground, we will account for 
the gravity component in the sin( )t rwW θ⋅  term.  

Collecting terms: 

 1 1 2 2cos( ) ( ) ( sin( ))g t e bw t t rw exF i F D D F F W Fθ µ µ θ⋅ + − = + + ⋅ + ⋅ + ⋅ +  (8.7) 

Requiring the summation of forces in the Z-axis to be zero: 

 1 2 1 2 cos( )t rwL L F F W θ+ + + = ⋅  (8.8) 

Require the summation of moments about the Y-axis to be zero. Take moments about the 
main wheels, since the aircraft will pitch about the main wheels during the takeoff or landing 
ground roll. Ignore any pitch dynamics during the ground roll or any moment caused by the 
vertical component of gross thrust.   
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 ( ) ( ) ( )1 1 2 1 2 1 1 1 2 1sin( )bw t t rwF X X L X XL D Z D Z Z W Zθ⋅ + + ⋅ − + ⋅ + ⋅ + + ⋅ ⋅ = 

 ( ) ( )2 1 2 1 2 2cos( ) cos( )t rw g t eW X F i F Z L XL XL Xθ⋅ ⋅ + ⋅ − ⋅ + ⋅ + −   (8.9) 

What we now have is three equations with three unknowns for purposes of simulating a 
takeoff or landing ground roll. It is assumed that one has a thrust and drag model for the lift, 
drag, gross thrust, and propulsive drag terms in the above equations. However, the lift and drag 
models may not be for in-ground effect. If no in-ground effect corrections are available, then 
some empirical predictions can be used until flight test results are available to create an in-ground 
effect model.  

The three unknowns are the two normal forces on the wheels ( 1F  and 2F ) and the excess 
thrust ( exF ). The primary parameter of interest is the excess thrust from which we can compute 
the derivative of groundspeed. Once we have the excess thrust, we can integrate the groundspeed 
derivative to obtain speed and distance versus time.  

Collecting equations 8.7 through 8.9: 

 1 1 2 2cos( ) sin( )g t e bw t t rw exF i F D D F F W Fθ µ µ θ⋅ + − = + + ⋅ + ⋅ + ⋅ +  

 1 2 1 2 cos( )t rwL L F F W θ+ + + = ⋅  
 ( ) ( ) ( ) ( )1 1 2 1 2 1 1 2 1sint t rwF X X L X XL D Z Z W Zθ⋅ + + ⋅ − + ⋅ + + ⋅ ⋅ = 

 ( ) ( )2 1 2 1 2 2cos( ) cos( )t rw g t eW X F i F Z L XL XL Xθ⋅ ⋅ + ⋅ − ⋅ + ⋅ + −   

Rearranging the equations: 

 1 1 2 2 cos( ) sin( )ex g t e bw t t rwF F F F i F D D Wµ µ θ + ⋅ + ⋅ = ⋅ − − − − ⋅   (8.10) 

 [ ]1 2 1 2cos( )t rwF F W L Lθ+ = ⋅ − −  (8.11) 

 ( )1 2 1X X F+ ⋅ =  

( ) ( )
( ) ( )

2 1 1 2 1 2 2

1 2 1 1 2

cos( ) sin( ) cos( )t rw t rw g t e

t

W X W Z F i F Z L XL XL X

L X XL D Z Z

θ θ θ ⋅ ⋅ − ⋅ ⋅ + ⋅ + − ⋅ + ⋅ + −
 
 − ⋅ − − ⋅ + 

 (8.12) 

We will define the terms in the square brackets in 8.10 through 8.12 as 1A , 2A , and 3A . 

Then we can rewrite equations 8.10 through 8.12 in three by three-matrix form as follows: 

 
( )

1 2 1

1 2

1 2 2 3

1
0 1 1
0 0

exF A
F A

X X F A

µ µ     
     ⋅ =    
    +     

 (8.13) 
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During the course of flight test, we measure excess thrust ( exF ).  However, the thrust and 
drag may be unknown, or at least not known precisely.  Therefore, we may need to iterate 
between the above equation and the solution of the above equation. The 1A  term is thrust minus 
drag minus the runway component of weight.   

The matrix relationship in equation 8.13 can be solved by multiplying both sides by the 
inverse of the square matrix.  

 
( )

1
1 2 1

1 2

2 1 2 3

1
0 1 1
0 0

exF A
F A
F X X A

µ µ
−

    
    = ⋅    
    +    

 (8.14) 

8.3 Developing a Takeoff Simulation  

Usually, the contractor will provide an initial estimated model for lift and drag as a function 
of angle of attack (α ). As mentioned before, one may need to supplement this model with 
empirical ground effect estimation, such as that found in the NASA takeoff and landing 
simulation program listed in the Bibliography. During the ground roll, the angle of attack is equal 
to the pitch attitude (α θ= ). The thrust incidence angle is usually zero or small.   

Only the most precise simulations will typically account for a separate tail and body drag, so 
we can ignore tD  in many cases. Accounting for tail lift and drag becomes more important for 
modeling braking performance to determine the load distribution on the main gear and the nose 
gear. For takeoff performance, a value of 0.015 is usually assumed for the rolling coefficient of 
friction (µ ). Values of µ  for a dry runway up to 0.025 are also used. In addition, a point mass 
model will be assumed with all the forces acting through the cg of the aircraft. Further, since 

g eF F>>  at low airspeeds, we make the following approximation:  

 ( ) cos( )n g e tF F F iθ≅ − ⋅ +  (8.15) 

 sin( )ex n t rwF F F D Wµ θ+ ⋅ = − − ⋅  (8.16) 

 cos( )t rwF W Lθ= ⋅ −  (8.17) 

where:  

F =main gear load (assume all load on the main gear). 

Combining equations 8.16 and 8.17: 

 ( )cos( ) sin( )ex t rw n t rwF W L F D Wµ θ θ+ ⋅ ⋅ − = − − ⋅  (8.18) 
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Equation 8.18 can be used in two ways. First, to solve excess thrust (equation 8.19). Second, 
to solve thrust minus drag (equation 8.20). We know (or assume values for) the other variables: 
gross weight, runway slope, rolling friction, and aerodynamic lift.  

 [ ] ( )sin( ) cos( )ex n t rw t rwF F D W W Lθ µ θ= − − ⋅ − ⋅ ⋅ −  (8.19) 

 [ ] ( )sin( ) cos( )n ex t rw t rwF D F W W Lθ µ θ− = + ⋅ + ⋅ ⋅ −  (8.20) 

From equation 8.19, we can compute the excess thrust during the ground roll of the aircraft. 
One would be provided models for net thrust drag and lift. The drag and lift models would be in 
the form of drag and lift coefficients versus angle of attack. Typical model formulations are as 
follows: 

 ( ), ,n CF f M H T=  (8.21) 

 ( ),L AGLC f hα=  (8.22) 

 ( ),D L AGLC f C h=  (8.23) 

where: 

M  = Mach number, 
CH  = pressure altitude (subscript C denotes calibrated), 

T  = ambient temperature, and 
AGLh  = aircraft wing height above ground level. 

The parameter AGLh  is needed to account for ground effect. The above are just typical model 
forms. They may also include Reynolds number (or skin friction drag) terms in the drag polar. In 
addition, the engine is usually not at 100-percent thrust at brake release so a thrust spool up factor 
needs to be supplied. One would also incorporate a fuel flow model to compute fuel used during 
takeoff. This is to account for the fuel used for mission calculations.  

8.4 Ground Effect  

Figure 8.2 is typical of a relationship defining the decrease in drag due to lift in-ground 
effect.  The data points were taken from a curve found in two separate textbooks, neither of 
which gave a source for the data. The texts are The Illustrated Guide to Aerodynamics by H.C. 
Smith and Technical Aerodynamics by Karl D. Wood. The suspicion is that this is from some 
early NACA work. The equation is a curve fit of the points. 
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Figure 8.2  Predicted Ground Effect Drag 

A very simplified model that approximates an F-16 aircraft in military thrust was created to 
illustrate takeoff simulation. The model constants and equations are as follows: 

a. S  = 300  = reference wing area (feet2). 

b. b  = 35 = wingspan (feet). 

c. AR  = 4.0 = 2 /b S  = aspect ratio. 

d. wh  = 5.0 = height of wing above ground while aircraft on the ground (feet). 

e. tsW  = 25,000. = start gross weight (pounds). 

f. noF  = 10,000. = thrust at zero Mach number (pounds). 

g. nslopeF  = 5,000 = slope of thrust versus Mach number (pounds). 

h. 
noFK  = 0.65 = thrust factor at zero time. 

i. τ = 2.0 = thrust time constant (seconds). 

 ( )/1
no

t
Fn FK K e τ−= − ⋅  (8.24) 
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Thrust runs can be used to determine this thrust spool up factor. It may not be a simple 
exponential function as we are using here. For our model, at time = zero, the thrust is 35 percent 
of zero Mach number thrust and increases exponentially with a 2.0 second time constant. Then 
the equation for the net thrust for this model becomes: 

 ( )n Fn no nslopeF K F F M= ⋅ + ⋅  (8.25) 

 f nW tsfc F= ⋅  (8.26) 

where: 

tsfc  = thrust specific fuel consumption. 

A curve fit of the data points in Figure 8.2 was performed to produce an equation for ground 
effect. 

 ( )24.12 108.29 /100w
GE

h hX Ln b
  += ⋅ +  

  
 (8.27) 

 1.0 , 1.0GE GEX if X= >  

Drag coefficient ( DC ) is computed as follows: 

 
( ) ( )2

min min
1

D D GE L LC C X C C
ARπ

 
= + ⋅ −  ⋅ 

 (8.28) 

where: 

minDC  = 0.0500 = minimum drag coefficient, and 

minLC  = 0.05  = lift coefficient corresponding to minimum drag. 

Ambient pressure ratio (δ ) is as follows (formula derived in the altitude section): 

 ( )5.25591 6.87559 6 CE Hδ = − − ⋅  (8.29) 

where: 

CH  = 2,300 feet = initial pressure altitude. 

 
SL

P
P

δ
 

=  
 

 (8.30) 

where: 

P  = ambient pressure, and 
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SLP  = ambient pressure at standard day sea level = 2116.22 pounds/ft2. 
 

Lift coefficient ( LC ) is as follows (from elliptic wing theory): 

 0 21
L L

ARC C
AR

π α
 ⋅ = + ⋅
   +   

 (8.31) 

As with the drag coefficient, an adjustment for ground effect needs to be applied to the lift 
coefficient. A lift coefficient factor in-ground effect was determined on two separate flight test 
projects a fighter and a transport at the AFFTC. In both cases, the ground effect factor at lift-
off was about 30 percent. The above lift and drag models are idealizations presented to illustrate 
general trends only. In a flight test project, one would initially use wind tunnel data, and later use 
flight test derived models. The formula is as follows: 

a. ( )

( )
1.30L IGE

L OGE

C
C =  

In both cases, the wing height to span ( /h b ) is about 0.20. Let us assume that by the time 
/h b  increased to 0.5 (half span), the lift ratio decreased to 1.05 (5 percent). Then, further assume 

that the relationship is base 10 logarithmic. That yields Figure 8.3.  
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Figure 8.3  Lift Ratio In-Ground Effect  

The equation corresponding to the above curve is as follows:  
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 ( )( )( )
10

( )
0.8609 0.6282L IGE

w
L OGE

C Log h h bC = − ⋅ +  (8.32) 

With the following constraint: 

a. ( )

( )
1.0L IGE

L OGE

C
C ≥  

The angle of attack is held to zero during the ground roll until a rotation speed is reached. 
This rotation speed (in this simulation example) is at a calibrated airspeed of 100 knots. 
Calibrated airspeed is normally displayed in the cockpit and was discussed in detail in Section 
4.0 Airspeed. As will be shown in the later vectored thrust takeoff section, the selection of 100 
knots as the rotation speed is probably much too low for an actual F-16. Upon reaching the 
rotation speed, the typical takeoff will rotate to some given angle of attack. Then, that angle of 
attack is held until the aircraft generates enough lift such that lift is greater than weight and the 
aircraft lifts off the runway. The angle-of-attack profile used in this example computer simulation 
is as follows: 

 ( )last tt
αα α ∆= + ⋅∆∆  (8.33) 

where: 

( ) 3.0t
α∆ =∆  deg/sec. 

The angle of attack (α ) is limited to a predetermined value. In this example simulation that 
value is 13 degrees. In the numerical integration, 13 degrees α  is reached at 130 knots calibrated 
airspeed. The lift first exceeds weight at an airspeed of 132 knots. The aircraft (or the simulated 
aircraft) will lift off the ground when lift is greater than weight.  

Lift and drag (formulas in lift and drag section) are computed as follows: 

 2 / 0.000675LL C M Sδ= ⋅ ⋅ ⋅  (8.34) 

 2 / 0.000675DD C M Sδ= ⋅ ⋅ ⋅  (8.35) 

Finally, the last terms in our model are the runway resistance. We will assume zero runway 
slope.  

µ  = 0.015 rolling coefficient of friction. 

Then, 

 ( )rw tF W Lµ= ⋅ −  (8.36) 
 0.0rw tF if L W= >  

Combining terms: 
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 ( )ex n rwF F D F= − +  (8.37) 

 ex x tF N W= ⋅  (8.38) 

 
0

g
x

t

V hN g V= +
& &  (8.39) 

During the ground roll, the h-dot ( h& ) term is zero. During the air phase, the normal load 
factor equation is used.  Equation 8.40 is derived in the section on normal load factor during a 
climb.  

 
0

cos( ) t
z

VN
g
γγ ⋅= +
&

 (8.40) 

 1sin
t

h
Vγ −  =  

 
&  flight path angle (8.41) 

From the ,x zN N , and γ  equations (8.39 through 8.41), we can numerically integrate 
groundspeed ( gV ) and geometric height ( h ). All of the forces, however, are functions of airspeed 
and pressure altitude. We have assumed a standard atmosphere for temperature. Standard 
atmosphere is defined in the altitude section.  

 288.15 (1.9812 /1000) CT H= − ⋅  (8.42) 

 t g wV V V= +  (8.43) 

where: 

tV  = true airspeed, and 

wV  = wind speed. We will assume wind speed equals zero.  

The following equations were derived in Section 4.0 Airspeed. 

 /tM V a=  (8.44) 

 SLa a θ= ⋅   = speed of sound (8.45) 

where: 

661.48SLa =  knots. 

 ( )288.15
Tθ =  = temperature ratio (8.46) 
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 3.521 0.2 1C

a

q MP
   = + ⋅ −    

 (8.47) 

where: 

Cq  = compressible dynamic pressure. 

 ( )( ){ }1/3.55 1 1C SL C SLV a q P = ⋅ ⋅ + − 
 = calibrated airspeed (8.48) 

where: 

2116.22SLP =  (pounds/ft2) = ambient pressure at standard sea level. 

A plot of thrust, drag plus the runway resistance terms and excess thrust versus calibrated 
airspeed, is shown in Figure 8.4. 
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Figure 8.4  Takeoff Forces 

The time history of the simulation is shown in Figure 8.5. 
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Takeoff Simulation Time History
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Figure 8.5  Takeoff Parameters 

Table 8.1 shows the significant events during the takeoff. 

Table 8.1 
TAKEOFF EVENTS 

 
Seconds 

CV  
(kts) 

α  
(deg) 

CH  
(ft) 

 
Event 

0.0 0.0 0 0.0 Brake Release/ 
Fn = 35 Percent 

8.4 50.1 0 0.0 99-Percent Thrust 
15.3 100.0 0 0.0 Rotation Initiated 
19.6 130.3 13 0.0 Rotation Completed 
19.9 132.2 13 0.0 Lift-Off 

Lift>Weight 
23.7 154.0 13 16.3 Out-of-Ground Effect 
26.43 167.6 13 50.0 Obstacle 

Clearance 
Height 

 

The inflection points in the drag versus calibrated airspeed plot (See Figure 8.4) can easily be 
correlated with the significant events in Table 8.1. For instance, from the initiation until 
completion of rotation, the angle of attack is increasing (at 3 degrees per second), which shows 
up in a dramatic rate of change of drag. Once angle of attack stabilizes at 13 degrees, the rate of 
increase of drag is reduced.  
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8.5 Effect of Runway Slope  

Using the pseudo F-16 model, the values of time and distance as a function of runway slope 
(in degrees) are shown in the Table 8.2. The average acceleration is computed as follows: 

 22 /a d t= ⋅  average (mean) acceleration (ft/sec2) (8.49) 

where: 

t  =  time at lift-off (seconds), and 
d  = distance to lift-off (feet). 

Table 8.2 
EFFECT OF RUNWAY SLOPE 

Slope 
(deg) 

Distance 
(ft) 

Time 
(sec) 

Acceleration 
(ft/sec2) 

From Zero 
(pct) 

-1.0 3,001 22.6 11.75 4.52 
0.0 3,131 23.6 11.24 0.00 
0.5 3,164 24.0 10.99 -2.29 
1.0 3,247 24.6 10.73 -4.56 
2.0 3,403 25.8 10.22 -9.06 

 
As can be seen, the effect of runway slope for this particular model is about 4.5 percent per 

degree of runway slope. For a typical light aircraft the effect of runway slope is at least twice that 
amount, due to the much smaller thrust to weight ratio of the typical light aircraft. The Edwards 
AFB main runway has an average slope of only 0.08 degree (21 feet elevation change in 15,000 
feet). The true heading for runway 22 is 238.32 degrees from true north (224.1 magnetic). The 
west end of the runway is 21 feet higher than the east end. For our  
F-16 model, this slope would produce a 3,142-foot takeoff distance compared to 3,131 feet for a 
perfectly level runway.   

Although the percentage change in acceleration is about the same for a positive or negative 
runway slope, one must take into account the fact of having a negative absolute rate of climb at lift-
off for a negative slope runway. For instance, for a lift-off at 100 knots groundspeed with a 
negative 1.0-degree slope runway, the absolute rate of descent is about 3 feet per second.  The rate 
of climb (or descent) with respect to the horizontal plane is as follows: 

 sin( )g rwh V θ= ⋅&  (8.50) 

8.6 Effect of Wind on Takeoff Distance  

Again, using the same pseudo F-16 model, Figure 8.6 illustrates the effect of wind. The 
takeoff speed is 132 knots calibrated airspeed. A positive wind on this plot is a headwind. 
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Effect of Wind on Liftoff Distance
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Figure 8.6  Effect of Wind 

8.7 Takeoff Using Vectored Thrust  

A limiting factor in takeoff distance for a high-performance fighter may be the ability to 
rotate the aircraft. Rotation would usually be achieved using the horizontal tail. The tail generates 
lift from dynamic pressure. A full fuel F-16 with no stores has a takeoff weight of approximately 
25,000 pounds. The engine on an F-16 aircraft in maximum afterburner has a static sea level 
rating of about 25,000 pounds. This does not mean the engine, when installed in the aircraft, 
produces that much thrust. There will be some degradation due to installation losses. For the sake 
of using even numbers, however, we will assume zero losses. In addition, the simulation that will 
be presented here will be for sea level. Figure 8.7 illustrates forces and dimensions for an F-16 
aircraft. We will presume that we have installed a nozzle with vectoring capability. 

As shown, the length of the F-16 is 49.25 feet. The following dimensions are approximate 
values scaled from the diagram: 

a. 14.5FnX =  feet (distance from main gear to thrust vector). 

b. 1 8.7X =  feet (distance from weight vector to nosewheel). 

c. 2 4.4X =  feet (distance from weight vector to main wheel). 

 



1X
 

 

 

 

Figure 8.7  F-1

The forces are the same as for the conventio
thrust vectoring to produce a pitching moment to

Vθ = thrust vectoring angle (+ nozzle up, to p

Requiring the summation of moments about 
8.51. We will assume that the lift and the weight
generally the case. We will also ignore the lo
would not make these simplifying assumptions. 
order terms.  

 ( )1 1 20M F X X L X= = ⋅ + + ⋅∑

Solving for the nosewheel force ( 1F ):  

 
(

2 2
1

1

tW X L X
F

X
⋅ − ⋅ −

=
+

Rotation will begin when the nosewheel forc
is zero. With 1F  equal to zero, we can solve for
the aircraft at zero airspeed.  

 
(
(

1sinV
W
F

θ − = 


L

tW
1F

2X
FnX

Vθ

nF

2F
 49.25 ft 
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For the conditions we have chosen, the vector angle computes to: 

 ( )1 25,000 4.4
sin 17.7

(25,000 14.5)Vθ
−  ⋅

= = ° ⋅ 
 (8.54) 

In round numbers, we would need to rotate the nozzle 18 degrees to rotate the aircraft at zero 
airspeed using thrust alone. That assumes the engine is producing 100-percent thrust at brake 
release. At higher airspeeds, the nozzle angle required will be less due to wing lift. The engine 
vectoring would only be used to initiate rotation. Once rotation begins, the vector angle can be 
decreased as the wing lift increases. Ignoring any tail lift, equation 8.51 becomes: 

 ( ) ( )2 sinyy t n VM I q L W X F θ= ⋅ = − ⋅ + ⋅∑  (8.55) 

where: 

yyI  = moment of inertia about the y-body axis, and 
q  = body axis pitch rate. 

For sea level, standard day and with the aircraft model previously defined, Figures 8.8 and 
8.9 illustrate lift-off performance. The simulation assumed rotation was initiated at 90 knots and 
a rotation rate of 10 degrees per second was obtained. This 10-degree per second rotation rate 
versus the previous 3-degree per second rate was used in the simulation to minimize the distance 
traveled between initiation of rotation and lift-off. It was presumed that some sort of control 
system function accomplishes the rotation to avoid overrotation at these high rotation rates. 
Overrotation means aft airframe ground contact. The rotation was continued until lift-off attitude 
(α θ= ) was attained. Then that attitude was maintained until lift-off ( tL W> ).   
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Figure 8.8  Distance to Lift-Off 

Takeoff: Lift-Off Alpha versus Airspeed
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Figure 8.9  Angle of Attack at Lift-Off 
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8.8 Effect of Thrust Component 

In the previous simulation, which has been the subject of this entire section so far, we have 
ignored the component of thrust. Once the thrust vectoring has accomplished its task of rotating 
the aircraft, the nozzle would be vectored to zero degrees with respect to the thrust axis. The 
simplified formula we used to compute normal load above is shown in equation 8.56, which is 
only applicable after lift-off has occurred. During the ground roll, a portion of the aircraft weight 
is supported by the ground.   

 z
t

LN W=  (8.56) 

The complete formula is as follows: 

 ( )sinz t g tL N W F iα= ⋅ − ⋅ +  (8.57) 

Hence, solving for zN : 

 
( )( )sing t

z
t

L F i
N

W
α+ ⋅ +

=  (8.58) 

We have presumed the thrust incidence angle ti  is zero. The effect of ignoring the sin( )gF α⋅  
term is quite dramatic. For instance, at the typical lift-off angle of attack for an  
F-16 of 13 degrees α , the term for gF  = 25,000 pounds yields 5,624 pounds of extra equivalent 
lift. A plot of lift-off speed versus angle of attack (Figure 8.10) illustrates the effect.  
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Figure 8.10  Effect of Thrust Component on Lift-Off Speed 
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The corresponding distances are presented in Figure 8.11. The lift-off angle of attack was 
varied to produce the variation in lift-off speed.  

Distance versus Lift-Off Airspeed: Effect of Ignoring Thrust Component
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Figure 8.11  Effect of Thrust Component on Distance to Lift-Off 

At 13 degrees α , we (the simulation) are able to lift-off at 116.2 knots in only 618 feet. 
Without thrust vectoring, the F-16 would (for these conditions) not be able to rotate before 
approximately 130 knots. We can take the nosewheel force equation and replace the thrust vector 
term with a tail lift term. 

 
( )

2 2
1

1 2

t t tW X L X L XF
X X

⋅ − ⋅ − ⋅=
+

 (8.59) 

Now, replace the terms above with the more general terms as shown in the C-141 diagram 
(See Figure 8.1). However, we will ignore runway slope and vertical terms. Again, taking 
moments about the main gear: 

 ( ) ( ) { }( )1 1 2 1 2 1 2 2 2 1 20 tM F X X L X XL L XL X XL W X= = ⋅ + + ⋅ − − ⋅ − − − ⋅∑  (8.60) 

To rotate the aircraft using tail lift, the tail lift ( 2L ) must be negative. Solving for the nose 
load: 

 
{ }( ) ( )

( )
2 2 2 1 2 1 2 1

1
1 2

tL XL X XL W X L X XL
F

X X

 ⋅ − − + ⋅ − ⋅ − =
+

 (8.61) 
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Rotation will occur when the nose load ( 1F ) equals zero. Solving for the required tail lift: 

 
( )

{ }( )
1 2 1 2

2
2 2 1

tL X XL W X
L

XL X XL
 ⋅ − − ⋅ =

− −
 (8.62) 

For our aircraft model, we have assumed 1 0XL =  and we will assume the tail force acts at 
the same point where we assumed the thrust vector acted. Then: 

 2 2 14.5 4.4 18.9FnXL X X= + = + =  (8.63) 

And: 

 
( )
( ) ( ) ( )1 2

2 1 1
2 2

0.303 0.3t
t t

L W X
L L W L W

XL X
 − ⋅ = = ⋅ − ≅ ⋅ −

−
 (8.64) 

Next, we can compute the difference between the tail lift ( 2L ) and the opposing lift from 
weight ( tW ) and wing lift ( 1L ).  

 ( )2 10.3 tLift L L W∆ = − ⋅ −  (8.65) 

During the aircraft takeoff ground roll, the angle of attack (α ) will be zero, but the wing will 
provide lift due to having flaps down configuration. A tail lift coefficient of 1.50 is assumed 
along with sea level standard conditions and a gross weight of 25,000 pounds. Four values of 
wing lift coefficient are chosen to be 0.10, 0.20, 0.30 and 0.40. Figure 8.12 shows the results of 
plotting Lift∆  versus calibrated airspeed ( CV ) for a tail area of 60 ft2.  
Figure 8.13 is for a tail area of 80 ft2. 
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Figure 8.12  Delta Tail Lift for Tail Area = 60 ft2 
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Delta Tail Lift  CL tail = 1.5; S tail = 80 ft^2
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Figure 8.13  Delta Tail Lift for Tail Area = 80 ft2 

The points on the plots where the Lift∆  becomes positive is the minimum speed for rotation. 
For instance, for a wing lift coefficient of 0.40 and a tail area of 80 ft2, the minimum rotation 
speed is about 119 knots (from Figure 8.13). 

For this aircraft simulation, we have assumed a constant 25,000 pounds of thrust. This is 
much greater than drag at lift-off speed. By varying the rotation speed, we can generate a plot of 
distance versus speed for lift-off (Figure 8.14). The rotation rate was assumed 10 degrees per 
second in each case. The 10-degrees per second rate is much greater than a normal rate of about 4 
degrees per second. The high rotation rate in the simulation was necessary to achieve reasonable 
lift-off speeds. Figure 8.14 shows the results. The line is approximately a straight line and is 
such, due to thrust being much greater than drag, which produces a nearly constant acceleration 
versus speed. 
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Distance versus Vc at Lift-Off
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Figure 8.14  Distance to Lift-Off versus Airspeed 

In each data point in Figure 8.14, the limiting factor in lift-off was the rotation rate. The lift-off occurred 
before 13-degrees α  was achieved. Figure 8.15 shows rotation speed versus lift-off speed and illustrates just 
how rapidly the aircraft (in this case, the aircraft model) was accelerating.  
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Figure 8.15  Calibrated Airspeed at Lift-Off  
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Table 8.3 shows the forces at 130 knots calibrated airspeed. 

Table 8.3 
FORCES AT LIFT-OFF SPEED 

nF  
(pounds) 

α  
(deg) 

 
LC  

 
DC  

Lift 
(pounds) 

Drag 
(pounds) 

rwF  
(pounds) 

exF  
(pounds) 

25,000 0.0 0.10 0.0501 1,716 860 345 23,795 
25,000 13.0 1.420 0.1420 24,369 2,437 9 22,554 
 

At rotation for 130 knots, for an excess thrust of 22,795 pounds, the speed is increasing at 
17.2 knots per second. That is why we needed such a high rotation rate, in order to achieve a 
reasonable lift-off speed. We must emphasize here that the model used was not an accurate  
F-16 model, but merely an approximate model used to illustrate takeoff principles. The equations 
for the lift and drag models were presented earlier. Figures 8.16 and 8.17 are plots of these 
equations. 
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Figure 8.16  Takeoff Lift Model 
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Takeoff/Landing Drag Model: CD Vs Alpha
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Figure 8.17  Takeoff Drag Model 

In computing drag on the ground, you start with a given angle of attack, then compute lift 
coefficient, and finally drag coefficient. 

 Ground: L DC Cα → →  (8.66) 

Once lift-off occurs, one is able to compute lift coefficient. You can also measure angle of 
attack. Then, you start with lift coefficient and compute drag coefficient. Ignoring the component 
of gross thrust: 

 Air: 
( )2

0.000675 z t
L D

N WC C
M Sδ
⋅= ⋅ →

⋅ ⋅
 (8.67) 

The lift and drag model used for this analysis is an idealized linear model. In the real world, 
there will be deviations from the linear model caused by flow separation at higher angles of 
attack. Experience has shown that this nonlinearity will begin at lift coefficients on the order of 
0.50.  

8.9 Engine-Inoperative Takeoff  

In this section, we will discuss takeoff of a two-engine aircraft with an engine failure at some 
point during the takeoff ground roll. We will use the same pseudo F-16 aero model. However, we 
will assume two engines instead of one. We will make simplifications, such as assuming an 
instantaneous loss of thrust on the failed engine. The purpose herein is to illustrate basic 
principles - not to generate an accurate simulation. Let us presume a very simple thrust model for 
each engine as follows: 
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a. 5,000nF
δ =  pounds. 

Now, we will simulate a takeoff at high altitude where the performance would be minimal if 
one engine were to fail. We will assume 10,000 feet pressure altitude ( 0.6877δ = ). Figure 8.18 
is a time history of a simulation for our 25,000-pound aircraft model with both engines operating. 
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Figure 8.18  Takeoff Parameters versus Time 

Takeoff forces versus calibrated airspeed up to an altitude of 100 feet are presented in Figure 
8.19. The plot is for both engines operating. 
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Two-Engine Takeoff Forces
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Figure 8.19  Takeoff Forces versus Airspeed 

For lift-off and 50 feet, Table 8.4 presents takeoff parameters.  

Table 8.4 
TAKEOFF PARAMETERS AT FLIGHT EVENTS 

 
Event* 

Time 
(sec) 

α  
(deg) 

CV  
(kts) 

nF  
(pounds) 

rwD F+  
(pounds) 

exF  
(pounds) 

h&  
(ft/sec) 

V&  
(kts/sec) 

1 0 0 0 6,877 375 6,502 0 4.96 
2 31.800 0 130.0 6,877 1,206 5,671 0 4.32 
3 33.100 13.0 134.6 6,877 2,600 4,277 0 3.26 
4 39.550 13.0 150.8 6,872 2,990 3,881 3.82 2.71 
5 44.725 13.0 161.6 6,864 3,423 3,441 11.41 1.94 
6 47.575 13.0 165.3 6,850 3,585 3,265 24.50 1.05 

*The numbered events are as follows: 
1.  Brake release 
2.  Initiate rotation 
3.  Lift-off 
4.  Out-of-ground effect ( AGLh  = 19.7 feet) 
5.  50 feet AGL (above ground level) 
6.  100 feet AGL 

 
The two-engine case in Figure 8.19 was presented primarily as a baseline of comparison for 

the following engine failed case. We will now assume that one engine fails at exactly the 
initiation of rotation ( 130CV =  knots). Figure 8.20 illustrates the same parameters as shown in 
Figure 8.19.  
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Engine Failure Takeoff Forces
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Figure 8.20  Takeoff Forces versus Airspeed: Engine Inoperative 

Table 8.5 duplicates Table 8.4 for the same events, except we will add an event (2.1), which 
is immediately after we fail one engine in the simulation.  

Table 8.5 
TAKEOFF PARAMETERS AT SIGNIFICANT EVENTS-ENGINE-INOPERATIVE 

 
Event 

Time 
(sec) 

α  
(deg) 

CV  
(kts) 

nF  
(pounds) 

rwD F+  
(pounds) 

exF  
(pounds) 

h&  
(ft/sec) 

V&  
(kts/sec) 

1 0 0 0 6,877 375 6,502 0 4.96 
2 

2.1 
31.79 
31.80 

0 
0 

130.0 
130.0 

6,877 
3,438 

1,206 
1,206 

5,671 
2,232 

0 
0 

4.32 
1.70 

3 33.70 13.0 132.0 3,438 2,503 935 0 0.71 
4 68.00 13.0 147.7 3,436 2,884 552 0.63 0.38 
5 100.00 13.0 154.6 3,432 3,133 299 3.49 0.01 
6 109.05 13.0 153.6 3,425 3,100 325 7.04 -0.20 

*The numbered events are as follows: 
1.0 Brake release 
2.0 Initiate rotation 
2.1 Engine failure 
3.0 Lift-off 
4.0 Out-of-ground effect ( AGLh  = 19.7 feet) 
5.0 50 feet AGL (above ground level) 
6.0 100 feet AGL 

 
As can be seen, by the time altitude equals 100 feet the aircraft is slowing. Although excess 

thrust is increasing slightly, that excess thrust is being used for climb at the expense of airspeed. 
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In case of an engine failure in such a scenario, one would need to reduce the drag and pitch over 
to reduce rate of climb. The drag reduction would be accomplished by raising the gear. Then, 
conduct a low-g turn (to minimize drag) and return to base for landing. This is just one possible 
option. The aircraft flight manual would contain the recommended emergency procedure. 

8.10 Idle Thrust Decelerations 

To assist in the development (or verification) of a takeoff and landing simulation, idle thrust 
decelerations may be performed. One would accelerate the aircraft on the runway to some high 
airspeed. Then, cut the throttle to idle and allow the aircraft to freely decelerate. We can solve for 
drag ( D ) in the equation found in the Developing a Takeoff Simulation subsection and then put 
D  into coefficient form. Lift and drag coefficients are discussed in the lift and drag section of 
this handbook. 

 [ ]sin( ) cos( )n ex t rw t rwD F F W W Lθ µ θ µ= − − ⋅ − ⋅ ⋅ + ⋅  (8.69) 
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9.0 LANDING 

9.1 Braking Performance  

Using the same aero model as for takeoffs, one can see the effect of braking coefficient of 
friction (µ ) upon stopping performance. The thrust has been set to a constant 600 pounds, 
representing Idle thrust. Minimum drag coefficient has been increased from 0.0500 to 0.0700 to 
account for additional drag devices (such as spoilers) activated during braking. In Figure 9.1, the 
coefficient of friction has been set to a constant 0.35; this is a typical dry runway value. The 
initial groundspeed was 130 knots for a calibrated airspeed of 124.8 knots. The gross weight has 
been reduced to 20,000 pounds, more representative of landing weight. The pressure altitude is 
2,300 feet with zero wind. 

Braking Forces: Mu = 0.35; Cd= 0.0700; Fn = 600 lbs
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Figure 9.1  Braking Forces 

For a dry runway, the µ  for maximum braking is typically between about 0.35 and 0.50. 
However, when one has an 8,000-foot runway, you usually will not conduct a maximum 
performance stop just to minimize tire and brake wear. Figure 9.2 shows the distance as a 
function of µ  for the 20,000-pound aircraft at 2,300 feet pressure altitude with initial speed of 
130 knots groundspeed.   
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Dry Runway: Distance versus Mu
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Figure 9.2  Stopping Distance versus Mu (µ ) 

For the braking coefficient range of 0.25 to 0.50, Figure 9.3 illustrates the deceleration (knots 
per second) versus calibrated airspeed. 
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Figure 9.3  Deceleration versus Calibrated Airspeed 

For wet runway conditions, the µ  is much less than for dry runway conditions. This is 
especially true at high speed where hydroplaning may occur. Hydroplaning is where the tires ride 
on a film of water and never contact the runway. Figure 9.4 represents actual test data. The test 
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was on a wet runway, with the water applied using water tankers. The data points are average 
values of the actual data and the line is a fourth-order polynomial curve fit of the data points.  

y = 3.736E-09x4 - 1.381E-06x3 + 1.811E-04x2 - 1.137E-02x + 4.326E-01
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Figure 9.4  Mu versus Groundspeed (Wet Runway) 

Figure 9.4 shows the braking coefficient computed from braking tests. The limits that will be 
used in applying the curve fit will be the curve fit values at the extreme points as follows: 

a. 0.336 if 10 knotsgVµ = < , and 

b. 0.047 if 130 knotsgVµ = > . 

A warning is appropriate for using curve fits in simulations. Invariably, the data will not 
extend to the full range of the desired simulation.  Using the curve fit beyond the range of its data 
should be avoided by use of limits. A limit would be where the curve fit value (y) would take on 
some predetermined constant value if the x value exceeds the highest (or lowest) value used in 
the curve fit.  

Wet runway forces are shown in Figure 9.5. The forces are computed using the mu or µ from 
Figure 9.4.  
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Braking Forces: Wet Runway
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Figure 9.5  Braking Forces versus Calibrated Airspeed 

The simulation for our wet runway model produces a total distance of 7,059 feet. This 
compares to a distance of 2,236 feet for our dry runway model using a constant µ  of 0.35. That 
is a factor of more than three times longer for a wet runway. That is typical, but as the saying 
goes, "your results may vary.”  

9.2 Aerobraking 

When one is faced with a wet or icy runway, in order to reduce the ground roll, aerobraking 
may be used. Upon touching down, instead of immediately pushing over to a  
3-point attitude to begin braking, the aircraft is held at a high pitch angle (to produce a high angle 
of attack) to maximize the aerodynamic drag.  In addition, aerobraking may be used on a dry 
runway simply to reduce wear on the brakes and tires. The ability to perform aerobraking is 
limited by at least two factors. First is the tail scrape angle, which limits how high of an angle of 
attack may be held. Second is the control power available to hold the aircraft up at an angle of 
attack. Figure 9.6 illustrates the difference in total resistance for aerobraking versus 3-point 
braking. For this simulation, the 3-point braking has more resistance except at high airspeed. 
However, in many cases, aerobraking can be more effective.  
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Drag + Runway Resistance Comparison: Aerobraking versus 3-point Braking
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Figure 9.6  Total Resistance Force Comparison  

9.3 Landing Air Phase  

The landing air phase will be discussed using the same aircraft model we have used for the 
takeoff discussion and the landing ground roll. The simulation will be conducted by first 
computing the initial conditions. We can compute the initial speed (Mach number), by assuming 
that the flight path angle (γ ) is initially constant ( 0γ =& ). The normal load factor equation is the 
same as for takeoff (equation 8.40). 

 
0

cos( ) t
z

VN
g
γγ ⋅= +
&

 (9.1) 

Then, 

 cos( )zN γ=  (9.2) 

Each aircraft is flown differently and different pilots may have slightly different pilot 
techniques. However, a typical final approach technique is a constant angle-of-attack descent. For 
our simulation, that angle of attack is 13 degrees. From angle of attack we can estimate the lift 
coefficient ( LC ).  The simulation used an estimated LC  of 1.05 (out of ground effect) for an 
angle of attack of 13 degrees. Then, we can compute Mach number as follows when we also have 
given the weight and altitude:     

 0.000675 Z t

L

N WM
S Cδ
⋅ ⋅=

⋅ ⋅
 (9.3) 
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Equation 9.3 is solving for Mach number from equation 5.6 in Section 5.0 (Lift and Drag). 
Further, we will assume that true airspeed is constant, initially. The longitudinal load factor 
equation then gives: 

 
0

t
x

t t

Vh hN
V g V

= + =
& &&

 (9.4) 

We can then solve for the net thrust that would be required to have true airspeed constant at 
the beginning of the landing descent. 

 n ex x tF D F D N W= + = + ⋅  (9.5) 

Having performed these computations, the initial descent rate is varied. The initial conditions 
chosen a runway pressure altitude of 2,300 feet at a standard day and an obstacle clearance 
height of 50 feet are what might be typical with a post-mission weight of 18,000 pounds. 

For this aircraft model, the simulation enters ground effect at 16 feet (AGL) and at touchdown, 
the additional lift is a factor of 1.30. Figure 9.7 illustrates the dramatic impact of ground effect. A 
constant angle of attack of 13.0 degrees is maintained and thrust is held constant. However, the 
ground effect will increase the lift and hence, the descent rate will decrease.  

Final Descent Rate versus Initial Descent Rate
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Figure 9.7  Final Descent Rate versus Initial Descent Rate 

The aircraft simulation predicted that, for the conditions specified, the aircraft would not 
touch down at any initial descent rate less than about 11.2 ft/sec. This is an ideal computer 
simulation, not a real airplane. In the real world, the pilot would take action to touch down with 
stick, throttle or speed brake. A pushover would decrease angle of attack, which would decrease 
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lift, thereby increasing descent rate. A pushover to about 10 degrees angle of attack would 
suffice. Interestingly, a pullup would also eventually get you on the ground. By pulling up 
sufficiently to dramatically increase drag, the aircraft will decelerate. With a lower airspeed, the 
lift will decrease and when lift becomes less than weight, you will descend. Reducing thrust will 
also cause a deceleration, however, you are already at near idle thrust and the small additional 
thrust increment could be insufficient. Finally, speed brake can be used to slow down and reduce 
lift.   

A time history of the descent for the landing simulation is shown in Figure 9.8. The 
simulation computations were begun at 50 feet AGL (above ground level), but only the last 20 
feet are shown. Notice the curvature in the final phase of the altitude versus time. The total 
distance from 50 feet to touchdown was computed to be 1,074 feet. When the same simulation 
was performed with ground effect terms eliminated, the total distance changed to 978 feet, for a 
difference of 96 feet or nearly 10 percent of the air distance.  
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Figure 9.8  Landing Air Phase 

9.4 Landing on an Aircraft Carrier 

The following text is the result of information given to the author by Page Senn and Richard 
Huff of the Naval Air Weapons Center, Patuxent River, Maryland. The situation we will discuss 
is the landing of an F/A-18 on a Nimitz class carrier. Figure 9.9 is a U.S. Navy photo of an F/A-
18 with its tailhook extended. At landing attitude [ 8.1α = °  and glideslope = 3.5 degrees (or 

3.5γ = − ° )], the vertical height from the tailhook to the pilot’s eye is 16.7 feet. The wing is 
roughly half the distance between the pilots eye and the tailhook as can be seen from the photo. 
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Hence, the wing height above the tailhook is about 9 feet. We will use that height to make 
estimates of ground effect. 

 
Figure 9.9  F/A-18 with Tailhook Extended 

Figure 9.10 is a Navy photo of the U.S.S. Nimitz. The landings are accomplished from the aft 
deck while the carrier is maintaining forward speed to give a minimum wind over the deck of 15 
knots. A more normal wind is 25 knots.  

 
Figure 9.10  The U.S.S. Nimitz 

The distance from the ramp to the target hook touchdown point is 230.2 feet. For the  
3.5-degree glideslope, this computes to a hook to ramp clearance of 14.08 feet for no flare. For 
the F/A-18 at 33,000 pounds, the airspeed is 146 knots. With the minimum wind speed of 15 
knots, this yields a groundspeed of 131 knots (146-15) assuming standard day temperature. We 
can calculate the time from passing over the ramp to tailhook touchdown as follows: 
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 distance(ft) 230.2time 1.04 sec
speed (ft/sec) 131 1.6878

∆ = = =
⋅

 (9.6) 

Since 15 knots of wind is the minimum, the time will generally be longer. A wind of 25 
knots, for instance, would produce a time of 1.13 seconds. The average sink rate from the ramp to 
target hook touchdown computes to 13.5 fps (ft/sec). This compares to the nominal sink rate 14 
fps. For the F/A-18, the gear limit is 25 fps and testing at Patuxent is accomplished up to 20 fps. 
Now, to estimate ground effect. The wingspan of the F/A-18 is 40.4 feet. Table 9.1 shows the 
height/span (h/b) of the aircraft versus distance along the deck from over the ramp to tailhook 
touchdown. Also shown is an estimate of percentage reduction in drag from Figure 8.2.  

Table 9.1 
GROUND EFFECT PARAMETERS FOR F/A-18 CARRIER LANDING 

 
 

Point Over Deck 

Distance 
Traveled  

(ft) 

 
Wing Height  

(ft) 

 
 

h/b 

Percentage 
Drag  
(pct) 

0 23.1 0.57 94.8 
50 20.0 0.50 91.4 
100 17.0 0.42 87.4 
150 13.9 0.34 82.6 

Ramp 

200 10.8 0.27 76.6 
Hook Touchdown 230.2 9.0 0.22 72.1 

Note: The percentage drag is an estimate of the drag as a percentage of the out-of-ground effect 
drag. 

We can estimate the change in speed of the aircraft due to ground effect. One form of the 
relationship between drag and drag coefficient is derived in the lift and drag section and is 
repeated below: 

 ( )2

0.000675
DC M S

D
δ∆ ⋅ ⋅ ⋅

∆ =  (9.7) 

For sea level standard day, 1.0δ =  and airspeed of 141 knots yields a Mach number ( M ) of 
0.2132. Airspeed and Mach number relationships are found in Section 4 (Airspeed). For an out-
of-ground effect drag coefficient of 0.25, we can estimate the change in speed by integrating.  

From DC∆ , we calculate D∆  using equation 9.7. Then, for a weight of 33,000 pounds we 
calculate longitudinal load factor and then the derivative of velocity. This assumes that all of the 
drag change goes into acceleration and none into changing the rate of descent.  

 
0 033,000
t t

x
t

V VD hN
g V g

∆= = + =
&& &

 

 0
32.174 19.06  (knots/sec)
1.6878t x x xV g N N N= ⋅ = ⋅ = ⋅&  (9.8) 

For a groundspeed of 126 knots (212.7 ft/sec), we will assume a constant descent rate based 
upon on a 3.5-degree glideslope. 
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 sin 212.7 sin( 3.5 ) 12.985 ft/secgh V γ= ⋅ = ⋅ − ° = −&  (9.9) 

Now, we can calculate the change in speed by integrating the speed derivative as shown in 
Table 9.2. 

Table 9.2 
CHANGE IN TRUE AIRSPEED DURING LANDING DUE TO GROUND EFFECT 

Distance 
Traveled 

(ft) 

Percentage 
Drag 
(pct) 

 
 

DC∆  

 
Drag∆  

(pounds) 

 
 
xN  

 
tV&  

(kts/sec) 

 
time∆  

(sec) 

 
tV∆  

(kts) 

 
tV  

(kts) 
0.0 94.8 0.0130 351 0.0106 0.20   141.00 

50.0 91.4 0.0216 582 0.0176 0.34 0.24 0.06 141.06 
100.0 87.4 0.0316 851 0.0258 0.49 0.47 0.10 141.16 
150.0 82.6 0.0436 1,174 0.0356 0.68 0.71 0.14 141.30 
200.0 76.6 0.0586 1,577 0.0478 0.91 0.94 0.19 141.48 
230.2 72.1 0.0698 1,880 0.0570 1.09 1.08 0.14 141.63 

Note:  Above data based upon an out-of-ground effect drag coefficient of 0.25. This was not a 
Navy-provided number. 

Another factor in landing on a carrier is the wind over the deck. There is a downdraft 
(negative vertical wind) immediately aft of the deck. The ship is traveling at a minimum of 15 
knots, the air flows downward aft of the ship. Then, when that air contacts the sea below, it is 
deflected upward creating an updraft for the oncoming aircraft. So, the aircraft first encounters an 
updraft, then a downdraft, and then a sudden loss of any vertical wind as it encounters the aft 
deck.  Navy tests did indicate a 1 to 2 knot increase in INS groundspeed during landing.  

9.5 Stopping Distance Comparison 

During the same series of tests that produced the braking coefficient of friction data in Figure 
9.4, tests were also conducted to determine aerobraking drag and dry runway braking coefficient. 
The aerodynamic drag coefficient during aerobraking at 13 degrees angle of attack was 
determined to be about 0.30. The dry runway braking coefficient (µ ) was found to be in the 
vicinity of 0.35. In addition, values of lift coefficient were determined from either predicted 
models or flight-determined. For a nominal landing gross weight, the touchdown speed is 135 
knots calibrated airspeed. Aerobraking can be maintained until approximately 70 knots calibrated 
airspeed, limited by available horizontal tail power. Table 9.3 summarizes the data for wet 
runway, dry runway, and aerobraking. 
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Table 9.3 
DRY, WET, AND AEROBRAKING DATA SUMMARY 

 

 

Lift Coefficient 

LC  
Drag Coefficient 

DC  
Braking or Rolling 

Coefficient (µ ) 

3-Point Braking: Dry 0.20 0.095 0.350 
3-Point Braking: Wet 0.20 0.095 Figure 9.4 

Aerobraking 0.90 0.300 0.015 
 

In addition, an idle thrust model was provided by the engine manufacturer. Since thrust was a 
small contributor to the distance integration, we will ignore thrust incidence. Plus, runway slope 
and wind were assumed zero and standard day conditions at sea level were used. The equation for 
excess thrust ( exF ) then simplifies to the following: 

 ( )ex n tF F D W Lµ= − − ⋅ −  (9.10) 

Using equation 9.8 and integrating versus time to compute distance yields Table 9.4. 

Table 9.4 
INTEGRATION OF BRAKING RESULTS 

Airspeed 
CV  

(kts) 

Dry  
tV&  

(kts/sec) 

Dry 
Distance 

(ft) 

Wet  
tV&  

(kts/sec) 

Wet 
Distance 

(ft) 

Aerobraking 
tV&   

(kts/sec) 

Aerobraking 
Distance  

(ft) 

135 -7.17 0 -2.63 0 -6.11 0 
125 -7.06 307 -2.47 873 -5.25 386 
115 -6.95 598 -2.48 1,693 -4.45 705 
100 -6.81 992 -2.58 2,768 -3.34 1,510 
80 -6.63 1,446 -2.71 3,920 -2.12 2,635 
50 -6.41 1,950 -3.04 5,088 N/A N/A 
0 -6.17 2,283 -5.90 5,660 N/A N/A 

Note:  N/A – not applicable      
 

A few observations from Table 9.4 should be made. First, dry runway 3-point braking 
provides the greatest deceleration at all speeds. However, by aerobraking for the first 20 knots 
(135 to 115) the difference in distance is only just over 100 feet. For this small increase in 
stopping distance, a substantial reduction in energy absorption by the brakes can be achieved – 
thereby increasing the service life of the brakes. Second, by using aerobraking down to 100 
knots, the distance to stop on a wet runway can be reduced by more than  
1,000 feet.   

9.6 Takeoff and Landing Measurement 

In the past (prior to this handbook), much of takeoff performance utilized external tracking. At 
the AFFTC, this was from Askania cameras. Askania was the brand of the particular cameras 
located in towers near each end of the main runway and about 1,500 feet from the runway. The 
cameras tracked the aircraft on film at up to four frames per second. The film contained azimuth 
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and elevation data. The film was developed, read, and computer-processed. The computer output 
included time, distance, velocity, acceleration, and altitude.  

Now, with the advent of INS and GPS, the onboard inertial velocity data can be integrated to 
provide distance. 

 gd V dt= ⋅∫  (9.11) 

where:  

gV  = horizontal component of groundspeed.  

Altitude would be determined by integrating the vertical velocity, beginning at the point 
where lift-off occurred. The precise determination of the lift-off point would involve additional 
onboard instrumentation such main gear loads or wheel speed. 

 vh V dt∆ = ⋅∫  = altitude above the lift-off point (9.12) 

where: 

vV  = vertical component of groundspeed. 

Since the INS is subject to small drift errors, it is necessary to subtract out any null error. For 
the horizontal distance, this is obtained by simply collecting data when the aircraft was stopped.  
For the height integration, the vertical velocity at the lift-off point would be subtracted out. The 
GPS does not have a null error.  A new device called an EGI (embedded GPS/INS) combines the 
outputs of both an INS and a GPS using a filter.  

To compute acceleration, it is recommended to differentiate the velocities rather than use a 
direct output of the INS. That is because the INS is sensitive to body axis vibrations of the 
aircraft and the acceleration data will be very noisy due to this vibration. Typically, an INS will 
internally integrate the accelerations at a sample rate of at least 50 samples per second. By 
sampling the INS velocities at no more than 5 samples per second, you can essentially average out 
the noise in the data. The topic of noise in accelerometer data is discussed within the flight path acceleration 
heading of the excess thrust section. Then, the longitudinal acceleration can be determined with something as 
simple as a central difference derivative method.  

 ( ) ( ) ( )( )
( ) ( )( )

1 1
1 1

g g
x

V i V i
A i

t i t i
+ − −

=
+ − −

 (9.13) 

where: 

i  = the 'i th  time sample. 

Improved integration results would be produced using a moving second-order polynomial 
curve fit; a data process used by the AFFTC. 
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10.0 AIR DATA SYSTEM CALIBRATION 

10.1 Historical Perspective   

In Engineering Aerodynamics (Revised Edition, 1936), Walter Diehl discusses the calibration 
of airspeed indicators. He references NACA Rep. T.N.135 (1923) by W.G. Brown titled, 
“Measuring an Airplane’s True Speed in Flight Testing.” Diehl states, “In general, airspeed 
indicators must be calibrated by runs up and downwind over a measured course.” We later knew 
this as the groundspeed course method. Diehl points out that such tests should not be done when 
the crosswind exceeds 15 knots as that would have resulted in an error in airspeed of more than 
one percent. In 1923, speeds of order of 100 knots were achievable. If the groundspeed is 100.0 
knots and there is a 15-knot wind exactly perpendicular to the aircraft’s inertial speed vector, 
then by trigonometry we could compute that the true airspeed is 101.1 knots. This is an error 
greater than one percent and even more for speeds less than  
100 knots. We rarely use the groundspeed course method at Edwards because of its lack of 
accuracy at high speeds and variable surface winds. The first problem is minimized with the 
advent of GPS to determine groundspeeds.  

10.2 Groundspeed Course Method 

The course would consist of two parallel lines connected by a line perpendicular to those two 
lines. The course at Edwards, for instance, is 4 miles long. The aircraft heading (direction nose is 
pointing) would be the same as the course heading in method one as shown in Figure 10.1. The 
aircraft would drift from the line due to any crosswind. The way to determine true airspeed is to 
simply use a stopwatch to time the aircraft between the start and end lines. These points are a known 
distance apart. This requires a visual hack of when the aircraft crosses the horizontal lines marked on 
the ground. Then, true airspeed is determined by the following. 

 Distance
TimetV ∆=

∆
 (10.1) 

As long as wind is unchanging, it does not enter into the problem since true airspeed is 
parallel to the course. Then, opposite heading passes are not needed. However, it is common to 
conduct passes in opposite headings just to get an average. Note: A positive wind vector direction 
is the direction from which the wind is blowing. 

 
Figure 10.1  Groundspeed Course – Heading Method 
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With the use of GPS, one could determine the component of groundspeed parallel to the 
course. Now, however, one would need to conduct opposite heading passes to average out the 
wind. Then, the average true airspeed is simply the average groundspeed. You would avoid the 
problem of visually determining the time passing points on the ground. In addition, GPS 
groundspeed is very accurate (0.1 m/sec).  

 
( )1 2

2
g g

t

V V
V

+
=  (10.2) 

Note a distinction between conducting opposite heading (direction the nose is pointing) and 
opposite direction (ground track direction) passes. The opposite direction or track angle passes 
would have the aircraft fly directly down the groundspeed line with the aircraft pointing into the 
wind to account for crosswind. You would need to be able to correct for crosswind if you flew 
these opposite direction passes as recommended in AFFTC Standard Airspeed Calibration 
Procedures (Reference 10.1). The opposite direction pass would be as shown in Figure 10.2. The 
opposite heading method is preferable, due to not having to make crosswind corrections. Note: A 
positive wind vector direction is the direction from which the wind is blowing. The data 
reduction in Reference 10.1 ignores crosswind. 

 
Figure 10.2  Groundspeed Method – Direction Method 

10.3 General Concepts      

The terminology ‘airspeed calibration’ actually involved the determination of corrections to 
be added to not only airspeed, but also pressure altitude and total temperature. The basic 
measurements are total pressure ( tP ), static pressure ( P ), and total temperature ( tT ). The static 
(or ambient) pressure and total pressure are used to compute calibrated airspeed ( CV ), pressure 
altitude ( CH ), and Mach number ( M ). With Mach number and total temperature, the true 
airspeed and ambient temperature can be calculated. The equations for these parameters are 
included in the airspeed and altitude sections of this handbook.  

On some limited evaluations, the basic measured parameters on the test aircraft are the actual 
measured values of indicated airspeed, indicated pressure altitude and indicated total temperature. 
The correction equations are as follows: 
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 C i iC pCV V V V= + ∆ + ∆  calibrated airspeed (10.3) 

 C i iC pCH H H H= + ∆ + ∆  corrected pressure altitude (10.4) 

 t ti tiT T T= + ∆  total temperature (10.5) 

where: 

iCV∆   = instrument correction to indicated airspeed, 
pCV∆  = position error correction to instrument corrected airspeed, 

iCH∆  = instrument correction to pressure altitude, 

pCH∆  = position error correction to pressure altitude, and 
tiT∆  = instrument correction to total air temperature. 

The modifier ‘corrected’ on pressure altitude is often dropped in practice. However, the 
modifier ‘calibrated’ on calibrated airspeed needs to be retained to distinguish it from true 
airspeed. When the parameters are instrument readings that not uncorrected for instrument and 
position errors then the modifier ‘indicated’ should be applied. The terminology ‘position error’ 
refers to the premise that there is some location on the aircraft to locate a sensor such that there 
would have been zero error in that measurement. However, there is no single position that would 
yield zero error at all Mach number and angle of attack.  

When dealing with the three basic measurements ( , ,t tP P T ) on a test aircraft the i  subscript 
referred to a measurement that had not been corrected for any instrumentation errors. The total 
temperature probe is also subject to an error called a probe recovery factor (η ). The relationship 
for total versus ambient temperature is as follows:  

 ( )21 0.2tT T Mη= ⋅ + ⋅ ⋅  (10.6) 

If, in flight test, one has an ambient temperature source (T ) and a total temperature 
measurement ( tT ) one could solve for η  in the above equation and could calibrate the probe. The 
value for η  is typically 0.98 to 1.00 for a well-designed system. However, in practical 
application with modern probes a value of 1.0 is frequently used.  

The tT  is the test aircraft’s measured total temperature. The ambient temperature (T ) would 
have been from another source. The other source could have been from another aircraft with a 
calibrated total temperature probe, from a weather balloon, or from a ground temperature 
measurement. The ground temperature measurement would be the source during tower flyby 
tests.  

Weather balloon data would not be used as a primary calibration source. However, it makes 
an excellent check on your data system. Too many performance engineers ignore this valuable 
source of information. Appendix A contains weather balloon data from the Edwards AFB 



 118

weather squadron. The data illustrates average values of winds and temperatures versus month. 
There is also data from a sampling of 1 month of weather soundings.  

A study conducted at Edwards AFB in the 1960s indicated that balloon temperature 
accuracies were on the order of ±2 degrees C.  

The two pressure measurements could both have ‘position’ errors as follows: 

 t ti tiP P P= +∆  (10.7) 

 i sP P P= + ∆  (10.8) 

Often, the symbology used here for ambient pressure ( P ) will be shown as ( sP ). The s 
would denote static. For purposes of this handbook static and ambient are considered the same 
thing. 

In general, both of the pressure measurements are subject to errors. However, it is often 
assumed that there is zero total pressure error. In that case, all of the Pitot-static error is in the 
ambient pressure measurement. A position error parameter called delta p over q is defined as 
follows:  

 ( )/ i
p Cic

Cic

P P
P q

q
−

∆ =  (10.9) 

where: 

Cicq  = indicated compressible dynamic pressure, and 

pP∆   = error in ambient pressure (position error). 

With the assumption of zero total pressure error, the correction to be added to compressible 
dynamic pressure simplifies to the following: 

 C pq P∆ = −∆  (10.10) 

At the AFFTC, a sign convention has been that a positive sign on pP∆  would produce a 
positive correction to be added to both calibrated airspeed ( CV∆ ) and pressure altitude ( CH∆ ). 
(One can avoid the confusion of a sign change by thinking of pP∆  as being a positive correction 
to be added to the compressible dynamic pressure ( Cq .)  A positive correction to be added to 
ambient pressure would produce a negative correction to be added to both calibrated airspeed and 
to pressure altitude. So, one would need to change the sign on the ambient pressure correction as 
follows:  

 ( ) ( )
/ i i

p Cic
Cic Cic

P P P P
P q

q q
− −

∆ = − =  (10.11) 
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10.4 Pacer Aircraft 

An aircraft that is utilized in the airspeed calibration of a test aircraft is called a pacer aircraft. 
The pacer will fly in formation with the test aircraft. The pacer’s computed values of calibrated 
airspeed ( CV ), pressure altitude ( CH ), and ambient temperature (T ) are compared to those three 
parameter values from the test aircraft. The test aircraft’s Pitot-static measurements are referred 
to as indicated values until a set of corrections can be determined by simply comparing to the 
pacers calibrated computed parameters. Just for simplicity, the computed ambient temperature is 
lumped with the pressure parameters and called Pitot-static parameters. The AFFTC pacer 
aircraft have onboard computers, which calculate instrumentation and position errors then add 
these corrections to the indicated values to present calibrated values. The position errors are the 
difference between the measured (or indicated) Pitot-static parameters and the true values.  

Before pacer aircraft became the standard for Pitot-static measurement, it needed to be 
calibrated before it could be utilized in the airspeed calibration of test aircraft. One of the 
methods used in calibrating a pacer aircraft is to fly against another pacer aircraft. This has the 
potential of passing on errors from another pacer. To avoid that problem the new pacer is also 
tested using the tower flyby, accel-decel, and cloverleaf methods. 

10.5 Tower Flyby 

The tower flyby method of airspeed calibration consists of flying along a flyby line on the 
lakebed and passing by an observation tower perpendicular to the flyby line some 1,379 feet away (at 
Edwards AFB). An observer in the flyby tower watches the aircraft pass by the tower. With a grid on 
a window, the observer is able to compute the aircraft’s altitude above the tower zero grid line as the 
test aircraft passes in front of the grid on the window. Figure 10.3 shows an actual photo of an aircraft 
(F-18) passing by the Edwards AFB flyby tower. 

A pressure altitude measurement in the tower is used to determine the zero grid line pressure 
altitude. Then, the pressure altitude of the aircraft is computed as follows: 

 /
std

C a c p tower tower
TH H h
T

 = + ∆ ⋅ 
 

 pressure altitude for the aircraft (10.12) 

where: 

p towerH  = pressure altitude measured at the zero grid line in the tower, 

towerh∆  = geometric height of aircraft above the zero grid line measured by the tower,  

stdT  = standard day temperature (°K) at p towerH , and 
T  = test day ambient temperature (°K). 
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Figure 10.3  Flyby Tower Grid 

Figure 10.4 (Reference 10.1) represents flyby tower data. 

Altitude versus Grid Reading
y = 31.422x

0

20

40
60

80

100

120
140

160
180

200

220

240

260
280

300

320

340
360

0 1 2 3 4 5 6 7 8 9 10 11 12

Grid Reading (in

A
lti

tu
de

 (f
t)

 

Figure 10.4  Altitude versus Gri
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Since h∆ = 31.422 times grid reading and at the very best a guess to the nearest 0.1 inch grid 
is possible, then the accuracy of the flyby tower data is about ±3 feet. That is an optimistic figure. 
Accuracies of better than 3 feet have been demonstrated with differential GPS (DGPS) over the 
flyby line at Edwards.  

Too often, the temperature correction is ignored. To illustrate the error that could result, 
consider a 90-degree F day at Edwards, which is a normal summer day. The geometric altitude of 
the zero grid line of the flyby tower is 2,305 feet. Assuming the pressure altitude is equal to the 
geometric altitude, then the standard day temperature computes to 283.6 degrees K. The test day 
temperature of 90 degrees F equates to 305.4 degrees K. Next, assume the aircraft flew by the 
tower at a geometric height of 200 feet as follows:  

a. /C a cH =2,305 + 283.6200.
305.4
 ⋅ 
 

 = 2,305 + 186. = 2,491 

If one ignores the temperature effect, the error in altitude would be 14 feet. Figure 10.5 
illustrates the effect of a 10-foot error in pressure altitude on calibrated airspeed at a pressure 
altitude of 2,500 feet. This error is computed based upon the assumption that there is zero error in 
total pressure.  
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Figure 10.5  Effect of 10-Foot Error in Flyby Tower Altitude 

10.6 Accel-Decel 

It is difficult to obtain stabilized airspeed calibration data in the transonic regime. In addition, 
at supersonic speeds, fuel consumption is very high. So, a method of accelerating and 
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decelerating starting and ending at subsonic speeds (where the airspeed calibration is known from 
the tests previously described) is used. The method is as follows: 

a. Perform an altitude survey over a small range of altitude (±1,000 feet, typically) from the 
start condition. The start condition is some Mach number, altitude condition.  

b. Acquire a few additional data points at the same indicated Mach number, but at different 
altitudes.  

c. Measure pressure altitude, Mach number, ambient temperature (computed from Mach 
number and total temperature) and tapeline altitude (radar or GPS).  

d. Compute also, the wind speed and direction, groundspeed and direction, and aircraft true 
airspeed. You now have the following functions: 

1. ( )CH f h=  where h  = tapeline altitude, 

2. ( )T f h= , 

3. ( )wNV f h= , and 

4. ( )wEV f h= . 

The four functions above are quite accurately represented by a straight-line curve fit.  The 
altitude survey can be as few as three data points to yield a straight line fit. Then, the aircraft is 
accelerated from this known calibration subsonic point through the transonic and into the 
supersonic regime where the calibration is not known. The data processing involves computing 
corrections to be added to airspeed, altitude, and total temperature. All of the required equations 
have been presented in previous sections. Figure 10.6 is a plot of a pressure survey taken prior to 
a supersonic accel-decel. The extreme data points are stabilized points while the other points are 
from a subsonic acceleration. The data are corrected using a position error curve previously 
determined from pacer and tower flyby data. The collection of data points near 30,000 feet 
pressure altitude are from a subsonic acceleration corrected using the pacer curve. Those data 
points are shown in the Figure 10.6.  

In Figures 10.6 and 10.7, one supersonic accel-decel data set is shown from data collected at 
the same time as AFFTC data set one. That data set is in the discussion of the cloverleaf method. 
Both plots are the same data; just presented with different parameters. Figure 10.7  is correction 
to be added to indicated pressure altitude. Figure 10.8 is the position error parameter versus 
indicated Mach number. The assumption is made that all of the error in the air data comes from 
the ambient pressure.  
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Subsonic Pressure Survey
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Figure 10.6  Pressure Survey 
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Figure 10.7  Accel-Decel Delta H 
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Delta P/qcic versus Indicated Mach Number
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Figure 10.8  Accel-Decel Position Error Coefficient 

Section 10.7 is an edited portion of a paper titled, “Pitot-Static Calibration Using a GPS 
Multi-Track Method” (Reference 10.2). This method is more commonly referred to as the 
cloverleaf method.  

10.7 The Cloverleaf Method - Introduction 

In the early 1970's, the AFFTC developed a new method to calibrate airspeed, References 
10.3 and 10.4. After this document was published, the author discovered that NACA used a 
similar method to calibrate airspeed on Airships in 1927 (Reference 10.7). The method was 
originally dubbed the cloverleaf method due to the pattern prescribed in the sky. The idea is as 
follows: One assumes that wind remains constant while the aircraft performs consecutive turns to 
produce three passes through a common airmass. Ideally, the passes should be equally spaced in 
heading (or 120 degrees apart) and at the same indicated airspeed.  Besides the two components 
of wind (north and east), there would be an unknown error in true airspeed that would need to be 
computed. This handbook will present the mathematics of this method and some substantiating 
data. They involve the solution of three nonlinear equations in three unknowns. It does not 
require that each pass be executed at the exact same airspeed or at precisely 120 degrees apart. 
The National Test Pilot School (NTPS), in Mojave, California, for instance, uses a method where 
the passes are 90 degrees apart, making the math much simpler (Reference 10.5).  

The development that makes this method dramatically more economical for flight test is 
GPS. One no longer needs to track the aircraft with radar, which reduces test time and required 
test resources, and there is a reduced cost for data processing. The method has been applied with 
reasonable success by the NTPS. What this handbook will contribute beyond that which the 
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NTPS has already contributed, is the nonlinear mathematical solution. The test points do not have 
to be flown as precisely, since the heading angles do not have to be exactly 90 degrees apart.  

This handbook will not discuss the theory and operation the GPS system.  In addition, it will 
not discuss air data systems at any length. Both subjects have been written about at length. See 
for instance, the U.S. Navy web site http://tycho.usno.navy.mil/gps.html. In addition, the 
references and bibliography contain just a few of the numerous information sources on these 
topics. For the sake of this handbook, the primary piece of information required of GPS is the 
accuracy of the velocities and at what update rate they are available. The military specification 
for velocity is 0.10 meters per second (0.19 knot). The data in this handbook was available at 1 
sample per second.  

This handbook will attempt to explain and demonstrate the validity of a method to calibrate 
true airspeed ( tV ), which invokes the principle that the vector sum of groundspeed plus wind 
speed is equal to airspeed. The terminology ‘true’ airspeed is used to avoid the confusion with the 
cockpit indicator readings, which are referred to as ‘calibrated’ airspeed ( CV ). For those not 
familiar with calibrated airspeed, the cockpit airspeed indicator only measures actual airspeed on 
a standard day (59 degrees F) at sea level standard pressure (2116.22 psf). The cockpit indicator, 
historically, could be constructed mechanically with only one pressure input. That input is a 
differential pressure between total and ambient pressure. The true airspeed, tV , on the other hand, 
is more complex. True airspeed ( tV ) requires computations involving total pressure ( tP ), ambient 
pressure ( P ), and total temperature ( tT ).  

By solving three equations in three unknowns, it will be shown how one can derive the 
unknown error in tV  and the north and east components of wind. Since it is easier to relate to 
wind speed magnitude ( wV ) and direction ( wψ ), the north and east components will be converted 
to magnitude and direction. 

10.8 The Flight Maneuver  

Figure 10.8 illustrates a sequence of cloverleaf maneuvers. The test is performed by first 
collecting stable data along a heading of 1ψ . Only a few seconds of data are required to acquire 
average airspeed and groundspeed data. Then a right-hand turn to a heading of 2ψ  is 
accomplished and repeats another data collection. A final right-hand turn ends up at a heading of 

3ψ  and a final collection of data. The whole sequence should be performed in one continuous 
sequence. Left-hand turns could also be used. In that case, the heading sequence would be 1,3,2 
instead of the 1,2,3 sequence for the right hand turns. The aircraft was flown on heading, but the 
data reduction involves track angle. Heading is the direction the aircraft is pointing while track is 
the angle of the aircraft groundspeed vector. Heading could also be considered the direction of 
the true airspeed vector when the sideslip angle is zero.  

 

http://www.tycho.navy.mil/gpsinfo.html.(I
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Figure 10.9  Cloverleaf Flight Maneuver 

On 19 August 1997, three cloverleaf runs were performed using an AFFTC F-15B pacer 
aircraft, USAF S/N 132 (Figure 10.10). A discussion of pacer aircraft can be found in References 
10.1 and 10.6. These runs were performed at nominal indicated conditions of 30,000 feet pressure 
altitude and indicated Mach numbers of 0.6, 0.7, and 0.8. Each run consisted of three separate 
passes at track angles about 120 degrees apart. In round numbers, the first pass was at a track angle 
of 15 degrees (N-E quadrant). Then a left-hand turn was performed bringing the aircraft around to a 
track angle of 255 degrees (S-W quadrant). Finally, a second right-hand turn was performed to a 
track angle of 135 degrees (S-E quadrant). Notice that the headings are separated by the ideal value 
of 120 degrees. If the data were acquired at roughly equally spaced angles, then the method should 
produce reasonable results. The NTPS, in fact, has demonstrated that a separation of 90 degrees 
produces quite adequate results.  

 
Figure 10.10  Air Force Flight Test Center F-15 Pacer 

 
10.9 Error Analysis  

This method is a true airspeed calibration method. There are five measurements: total pressure 
( tP ), ambient pressure ( P ), total temperature ( tT ), ground speed ( gV ), and track angle ( gσ ). The 
first two measurements come from pressure transducers. In many cases, the data  
 



 127

source may be altitude and airspeed. In that case, total and static pressure are computed from altitude 
and airspeed. The third one is from a total temperature probe. The last two parameters are either 
GPS or radar measurements. The laboratory calibration accuracy for pressure transducers is about ± 
0.001 in. Hg (0.071 psf) and about ± 0.10 °K for temperature probes. Therefore, one will use these 
numbers and pick a typical condition near the test conditions of the data shown in this handbook.  

 
a. Mach number = 0.800, 

b. Pressure Altitude = 30,000 feet, and 

c. Ambient Temperature = 242.0 °K. 

At those conditions (and carrying out computations to beyond usual resolution): 
 

a. tP  = 957.944 psf, 

b. aP  = 628.432 psf, 

c. tT  = 272.98 °K, and 

d. tV  = 484.959 knots  (true airspeed). 

Since we are working with two different units on pressure, the conversion factor is as follows: 

a. in. Hg = 70.726 psf 

add 0.001 in. Hg "error" to tP  
 

b. Pt = 958.0147 

computing true airspeed 

c. tV  = 484.999 knots. 

The error in computed true airspeed for an error in total pressure then is: 

d. ( tV∆ )/( tP∆ ) = (484.999 - 484.959)/(958.0147-957.944) = 0.565 (knots/psf) = 0.044 knots 
per 0.001 in. Hg Total Pressure.  

Hence, for the laboratory accuracy of 1-milli-inch of mercury (0.001 in. Hg) the error in total 
pressure results in a 0.044-knot error in true airspeed. Keep in mind this is the error slope at just 
this one set of conditions.   

To examine ambient pressure errors, add the same error (0.001 in. Hg) to ambient pressure, 
while keeping the other parameters the same.  

a. P  = 628.5027, 
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b. tV   = 484.898, then,  

c. ( /tV P∆ ∆ )= (484.898 - 484.959)/(628.5027-628.432) = -0.861 (knots/psf) = -0.067 knots 
per 0.001 in. Hg Ambient Pressure. 

A 0.1-degree error in total temperature produces a true airspeed error as follows: 

a. tV   = 485.048,  

b. ( /t tV T∆ ) = (485.048-484.959)/(0.1) = 0.89 (knots/deg K) = 0.089 knots per 0.1 °K Total 
Temperature.  

For this particular flight condition, an error in the aircraft parameters equal to their laboratory 
accuracies would produce errors in tV  of less than 0.1 knot. For the AFFTC data, some of the 
results will be presented to greater than 0.1-knot resolution, but this does not imply that that 
accuracy level has been achieved.        

Errors in ground speed will produce errors in true airspeed proportional to the error in the 
ground speed on each leg of the method. The ground speed error is likely to be just the 
readability of the data. In the case of using a hand held GPS unit, the error in each leg might be 
either to the nearest knot or to the nearest one-tenth of a knot.    

10.10 Air Force Flight Test Center Data Set  

The results for the 19 August 1997 data are summarized in Tables 10.1 through 10.3. Note that the 
numbers are displayed to at least one digit more than their accuracy level. 

Table 10.1 
AIRCRAFT AVERAGE MEASUREMENTS AND PARAMETERS 

Run 
Number 

tiP  
(psf) 

siP  
(psf) 

tiT  
(deg K) 

CiH  
(ft) 

CiV  
(kts) 

iT  
(deg K) 

1 806.375 635.606 260.1 29,750 222.1 243.0 
2 878.482 637.459 266.5 29,686 261.7 243.2 
3 985.959 639.174 275.7 29,627 311.4 243.6 

Note:  The subscript i  denotes indicated value. 

Table 10.2 
INERTIAL SPEEDS (GPS) 

Run 
Number 

gaV  
(kts) 

gaσ  
(deg) 

gbV  
(kts) 

gbσ  
(deg) 

gcV  
(kts) 

gcσ  
(deg) 

1 409.65 18.39 326.41 257.76 370.26 127.14 
2 471.22 16.48 390.51 258.08 431.83 127.80 
3 545.07 16.74 465.88 257.20 506.79 128.23 

Notes: 1.  Subscripts a, b, and c denote separate passes. 
 2.  Runs 2a and 2b used radar data. 
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Table 10.3 
OUTPUTS 

Run 
Number 

 
iM  

 
M  

tV∆  
(kts) 

wV  
(kts) 

wψ  
(deg) 

T  
(°K) 

CH  
(ft) 

CH∆  
(ft) 

CV∆  
(kts) 

 
/ CicP q∆

1 0.5947 0.6054 6.07 48.01 223.74 242.4 29,935 185 3.32 0.03098 
2 0.6927 0.7088 8.94 46.93 222.54 242.2 30,004 318 4.73 0.03793 
3 0.8119 0.8322 10.87 45.86 223.86 242.1 30,080 453 5.49 0.03759 
 
 

The pacer corrections are known to a high degree of accuracy. These corrections are in the 
form of a curve of the parameter / CicP q∆  versus indicated Mach number. This parameter is 
often referred to as the position error parameter. These corrections are applied to pacer data any 
time the pacer is used to calibrate another aircraft. Figure 10.11 is a plot of the three cloverleaf 
data points with a comparison with the pacer curve.   
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Figure 10.11  Position Error 

Groundspeed time histories for run number one are depicted in Figures 10.12 through 10.14. 
Run number one consists of three separate passes (1a, 1b, and 1c). They are at the same aim 
airspeed but at different groundspeeds. These compare radar data and GPS data, both of which 
have been smoothed in this case with a 19-point second-order polynomial curve fit.   
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F-15: Run 1a
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Figure 10.12  Groundspeed – Run 1a 

F-15: Run 1b
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Figure 10.13  Groundspeed – Run 1b 
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F-15: Run 1c
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Figure 10.14  Groundspeed – Run 1c 

For the first run (number 1a), Figure 10.15 illustrates a comparison of true airspeed. The 
pacer aircraft has a direct output of corrected true airspeed. This is compared to a computation of 
true airspeed from GPS groundspeed plus the computed wind speed. 

F-15 Run1a True Airspeed
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Figure 10.15  True Airspeed 

An interesting observation is that as long as the error in airspeed is the same on each leg, the 
computed value of wind will be identical. That means one could use this technique to “measure” winds; 
“measure” since one would actually compute the winds rather than measure them.  
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From the start of the first pass (1a) to the completion of the last pass (3c) was 37 minutes. This was 
an excessive amount of time for these tests. It seems clear that something considerably less than a full 
minute of data on each pass would be quite adequate. A 10-second average would suffice. Then, by 
relaxing the requirement to maintain the test airspeed exactly, an additional amount of test time could be 
saved. Without the need for radar, tracking it becomes unnecessary to co-ordinate with the radar tracking 
team and that saves even more time. It seems reasonable that a factor of two or more savings in flight 
time could be achieved. Thus, not counting the time required to climb to the test altitude, each set of three 
passes could be concluded in about 5 minutes or less.  

10.11 Mathematics of the Cloverleaf Method  

The basic vector equation that one will solve for the cloverleaf method is nothing more than true 
airspeed equals the vector sum of groundspeed and wind speed.  

 t g wV V V= +
r r r

 (10.13) 

 tN gN wNV V V= +  (10.14) 

 tE gE wEV V V= +  (10.15) 

 t ti tV V V= + ∆  (10.16) 

The north and east components of groundspeed are either direct outputs of the GPS or are 
computed as follows:  

 cos( )gN g gV V σ= ⋅  (10.17) 

 sin( )gE g gV V σ= ⋅  (10.18) 

The aircraft track angle (or the direction of the groundspeed vector) is gσ . Writing down the 
relationship that true airspeed squared is equal to the sum of the squares of its components. 

 2 2 2
t tN tEV V V= +  (10.20) 

Substituting equations 10.14 through 10.16 into equation 10.20 yields equation 10.21. 

 2 2 2( ) ( ) ( )ti t gN wN gE wEV V V V V V+ ∆ = + + +  (10.21) 

Multiplying out equation 10.21 and collecting terms, one gets: 

 (2 ) (2 )t ti t wN gN wNV V V V V V∆ ⋅ ⋅ + ∆ − ⋅ ⋅ +  

 2 2(2 ) ( )wE gE wE g tiV V V V V− ⋅ ⋅ + = −  (10.22) 
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Defining the following: 

a. tx V= ∆  

b. wNy V=  

c. wEz V=  

d. 2 2
g tiC V V= −  

 1 2 2ti t tiA V V V x= ⋅ + ∆ = ⋅ +  (10.23) 

 2 2 2gN wN gNA V V V y= ⋅ + = ⋅ +  (10.24) 

 3 2 2gE wE gEA V V V z= ⋅ + = ⋅ +  (10.25) 

Each pass produces an equation. As show in equation 10.26, subscript 1 is the first pass, 2 is 
the second, and 3 is the third. The unknowns , andx y z  are presumed constant for all three runs. 
In matrix form, the equations are as follows: 

 
1 1 1 1

2 2 2 2

3 3 3 3

1 2 3
1 2 3
1 2 3

A A A x C
A A A y C
A A A z C

− −     
    − − ⋅ =    
    − −     

 (10.26) 

In matrix shorthand form: 

 [ ] { } { }A X C⋅ =  (10.26) 

The vector of unknowns { }X  is solved by multiplying each side of equation 10.26 by the 

inverse of the [ ]A  matrix. 

 { } [ ] { }1X A C−= ⋅  (10.27) 

The unknowns , andx y z  in the{ }X are also contained in [ ]A . So an iteration is required. 
The initial estimates for the X  values will be zero. Then, the matrix equation is used to compute 
a new set of X  values. These values are inserted into [ ]A , [ ]A  is inverted again, and equation 
10.27 is used again. Repeat the process until convergence occurs. When the iteration is complete 
you have solved for the desired numbers, namely an error in true airspeed and two components of 
wind. 
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11.0 CRUISE 

11.1 Introduction    

Cruise performance is usually considered the most important test performed during the 
performance testing phase. Especially for transport and bomber aircraft since most of the fuel 
consumed during a typical mission is during stabilized cruise. For accurate mission planning, it is 
critical to be able to predict fuel consumption. Cruise testing was also the most time consuming 
test for transport and bomber aircraft. Even for fighter aircraft, it was a significant portion of the 
performance flight test program.  The emphasis is on was, as efforts are being made to reduce the 
amount of flight time spent collecting cruise performance data.  

The primary parameters in cruise performance are specific range ( SR ) and range factor 
( RF ). Specific range is nautical air miles per pound of fuel used. Range factor is specific range 
multiplied by gross weight. 

A typical cruise data point can take up to 10 minutes to perform. This is usually required for 
engine and aircraft stabilization. The typical stabilization requirement is an airspeed change of 1 
knot per minute. This is equivalent to roughly 0.001 g in flight path acceleration, which is 
roughly 1 percent in drag or fuel flow. A simple example will show this 1-percent factor. For a 
transport category aircraft, a typical lift to drag ratio is an even 10.  

a. / 10 / 0.10L D or D L= =  

b. tL W≅    / 0.10tD W =   0.10 tD W= ⋅  

c. n exD F F= −    

d. 0.001xN =    0.001 tD W∆ = ⋅  

e. 0.001 0.01 1.0%
0.10

t

t

WD or
D W

− ⋅∆ = = − −
⋅

 

For non-afterburner operation, a 1-percent change in drag will equate to about a 1-percent 
change in fuel flow. We strive for an accuracy of 1 percent in cruise performance. There are 
many sources of error, which add up to this 1 percent. We have errors in gross weight, pressure 
altitude, Mach number, ambient temperature, fuel flow, and flight path acceleration. The main 
sources of error are in the last two: fuel flow and flight path acceleration. With modern 
instrumentation (as of the writing of this handbook), we have been achieving at least 1-percent 
uncertainty in fuel flow. With an INS, we have computed flight path acceleration ( xN ) to better 
than 0.001 g. By using INS data, we no longer have to spend 10 minutes to get the aircraft 
perfectly stabilized because we can accurately measure any small acceleration and make accurate 
corrections to the data. The other reason for 10-minute speed power points was to get the engine 
perfectly stabilized. During a series of cruise points, the pilot made only small throttle changes 
between points and kept the throttle fixed at near constant flight conditions for several minutes so 
very long stabilization periods should not be required with modern engines.   
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11.2 Cruise Tests   

Cruise tests are done to determine aircraft range and endurance and to help in the 
development of drag, thrust, and fuel flow relationships. Cruise is a wings level, constant altitude, 
and constant speed maneuver. Testing is often accomplished by testing a matrix of constant 
aircraft gross weight-pressure ratio ( /tW δ ) points. The altitude is varied between points to yield 
an average /tW δ  to be a specified value. It is, however, an approximation that constant /tW δ  
generalizes the data in any way. There are altitude effects on the data. The preferred method is to 
do constant altitude testing at varying gross weights to cover a range of /tW δ  and altitude. The 
data could be corrected to nominal /tW δ  values, but by correcting to weight and altitude it is 
easier to make flight manual comparisons.  
Table 11.1 represents B-52G data. The G model has turbojet engines that were 1950's vintage.  

Table 11.1 
B-52G CRUISE DATA 

Altitude 
(ft) 

Weight 
(pounds) 

Specific Range 
(nm/pound) 

Range Factor 
(nm) 

35,000 400,017 0.0242 9,680 
50,000 194,574 0.0437 8,503 

Note: The cruise condition was 1.7 million pounds /tW δ   
and Mach number = 0.76. 

The average degradation in range factor for the B-52G is 0.81 percent per 1,000 feet of 
altitude increase.  

In the case of the B-52H model, the average degradation in range factor is 0.56 percent per 
1,000 feet of altitude increase. Another data point is early F-16A data that indicated about a 0.50 
percent per thousand-foot degradation factor. The F-16A is not a long-range aircraft and as such 
had a much smaller fuel fraction. Fuel fraction is the ratio of total fuel weight at engine start to 
empty gross weight.  

Points are flown by stabilizing as nearly as possible to aim airspeed and altitude, typically ±0.01 
Mach number and ±100 feet of altitude. The usual stabilization criterion is 1 knot per minute in airspeed 
and 50 feet per minute in altitude. With an INS to compute aircraft acceleration, the stabilization criterion 
could be relaxed somewhat. Typically, it takes up to 10 minutes to get the aircraft stabilized followed by 
30 seconds to 1 minute of recorded data. Cruise testing is very time consuming with this method. By 
relaxing the stabilization criterion, considerable savings in time could be achieved. In addition, a real-
time display of computed flight path acceleration could be useful in reducing the time required to 
stabilize. 

11.3 Range 

The computation of range ( R ) during cruise is the integration of true airspeed as follows: 

 tR V dt= ⋅∫  (11.1) 
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where: 

dt  = time increment (hours), and 
R  = range (nam [nautical air miles]), 6,076.115 feet = 1 nm (1,852 meters, exactly). 

We could put the range equation in different forms by making some substitutions. First, we want to 
put Mach number ( M ) into the equation by using the Mach number equation as detailed in the airspeed 
section of this handbook.  

a. tVM a= , and 

b. 661.48SLa a θ θ= ⋅ = ⋅ . 

Substituting into the range equation. 

 ( )661.48R M dtθ= ⋅ ⋅ ⋅∫  (11.2) 

Defining fuel flow as the negative of the rate of change of weight: 

 t
f

dWW
dt

 = − 
 

 (11.3) 

where: 

fW  = fuel flow (pounds/hour), and 

tdW  = incremental weight (pounds). 

 
1

t
f

dt dW
W
 

= − ⋅  
 

 (11.4) 

Substituting for equation 11.4 into equation 11.2: 

 661.48
t

f

MR dW
W

θ ⋅ ⋅= − ⋅  
 
∫  (11.5) 

Making these substitutions: 

 f
f

W
W δ θ

δ θ
 

= ⋅ ⋅ ⋅ 
 (11.6) 

 / t
t

WWδ δ
 =  
 

 (11.7) 
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 f t
f

t

W WW
W

θ
δ θ

δ

 
  

= ⋅ ⋅    ⋅       

 (11.8) 

The integration is from a start weight ( tsW ) to an end weight ( teW ). 

 661.48te

ts

W

W
f t

t

MR dt

W W
W

θ

θ
δ θ

δ

 
 
 
 

⋅ ⋅ = − ⋅      ⋅ ⋅    ⋅         

∫  (11.9) 

It’s not as bad as it looks. Canceling the θ  terms and putting tW  under dt : 

 

( )

661.48te

ts

tW

tW
f

WM dtR
WW

δ

δ θ

 ⋅ ⋅ 
 = − ⋅

 
 
 ⋅ 

∫  (11.10) 

If one were to fly constant Mach number and maintain constant /tW δ , then the numerator 
term could be brought out of the integral. This would involve a slow cruise climb and we will 
show how much extra thrust that requires. At constant /tW δ  and M , the lift coefficient would 
be a constant. Then, ignoring the change in skin friction drag with altitude, the drag coefficient 
will be constant. Ignoring the thrust component, drag coefficient (as derived in the lift and drag 
section) is as follows: 

 
( )

2

/
0.000675 n

D

F
C

M S
δ

= ⋅
⋅

 (11.11) 

Then /nF δ  will be constant, since we have assumed that Mach number and DC  are constant.  

The corrected thrust specific fuel consumption relation is as follows: 

 
( )

/

f

f

nn

W

W
tsfc

FF

δ θ
θ

θ
δ

 
 
 ⋅ = =

 ⋅  
 

 (11.12) 
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We have presumed the denominator ( /nF δ ) to be a constant. The /tsfc θ  is also 
considered to be approximately a constant at constant Mach number and /nF δ . Now, we can 
pull these (approximately) constant terms out of the integral and integrate. 

 

( )

661.48 te

ts

t W

tW
f

WM dtR
WW

δ

δ θ

 ⋅ ⋅ 
 = −

 
 
 ⋅ 

∫  (11.13) 

The term in front of the integral is called range factor ( RF ).  

 
te

ts

W

tW

dtR RF
W

= − ⋅ ∫  (11.14) 

You may be more used to seeing RF  in the following identical form: 

 t
t t

f

VRF W SR W
W

= ⋅ = ⋅  (nautical air miles) (11.15) 

where: 

SR = specific range (nautical air miles per pound of fuel). 

From a table of integrals and natural logarithm relationships: 

 ( ) ( )ln ln ln ln
b

a

dx b ab a a bx
= − = = −∫   

where:  

ln  = natural logarithm. 

 ln ts

te

WR RF
W
 

= ⋅  
 

 (11.16) 

The above equation is convenient to get a quick estimate of range given only the average 
range factor and the start and end cruise weight. Note that this is the range during the cruise 
segment and does not include taxi, takeoff, climb, and descent. 

11.4 Computing Range from Range Factor 

Using the previous tabulated B-52G data, we will compute range and show the magnitude of 
the climb factor. We will assume that the two points at 35,000 and 50,000 feet are the beginning 
and end of the cruise segment of a mission. The cruise is at constant 0.77 Mach number and a 
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/tW δ  of 1,700,000 pounds. Using previously defined formulas for true airspeed, energy altitude, 
and pressure ratio we construct Table 11.2.  We will linearly interpolate versus altitude for range 
factor. 

Table 11.2 
RANGE FACTOR VERSUS ALTITUDE FOR B-52G 

 
Altitude 

(ft) 

True  
Airspeed 

(kts) 

Energy 
Altitude 

(ft) 

Gross 
Weight 

(pounds) 

Net 
Thrust 

(pounds) 

Range 
Factor 
(nm) 

35,000 443.84 43,721 423,547 42,355 10,843 
36,089 441.65 44,724 402,052 40,205 10,777 
40,000 441.65 48,635 333,155 33,316 10,539 
45,000 441.65 53,635 261,986 26,199 10,234 
50,000 441.65 58,635 206,020 20,602 9,930 

Note: Thrust was computed by assuming a lift to drag (L/D) ratio of 10. This is typical for a 
transport category aircraft.  

We could get a first estimate of range by using an average range factor and the start and end 
conditions. 

 ( )9,680 8,503 400,016ln ln 6,552 nam
2 194,574

s

e

WR RF
W

+   = ⋅ = ⋅ =   
  

 (11.17) 

Since we assumed a linear variation of range factor with altitude, we will get the same result 
by integrating the individual segments. Range factor will not be a linear function of altitude, 
usually.  

The time for this mission computes to be 54,100 seconds (15.04 hours).  From the table, the 
delta energy altitude is 14,914 feet. The average speed is 736.5 feet per second. Now, we can 
calculate the average longitudinal load factor necessary to produce enough excess thrust to 
sustain this cruise climb. 

 

( )
( )
14,914
51,000 0.2955 0.00040
736.5 745.6

E
x

t

HN
V

= = = =
&

 (11.18) 

At the average weight of 297,295 pounds, the average excess thrust calculates to 119 pounds.  
The average thrust is 29,730 pounds, therefore the ratio of excess thrust to net thrust is: 

a. 119 0.0040 0.40%
29,730

ex

n

F or
F

= =  

By ignoring the excess thrust, we over estimated the range by 26 nam (0.40 percent of 6,552 
nam). Quite small, but not negligible. On an actual mission, the mission profile would be step 
climbs. For this example, you would start the cruise segment at 35,000 feet and fly constant 



 141

altitude until it was decided to climb to a new altitude. This might be in increments of 4,000 feet. 
When flying in civilian airspace, the altitudes are 4,000 feet apart.   

11.5 Constant Altitude Method of Cruise Testing    

The recommended method of doing cruise testing is the constant altitude method. The  
F-15 and F-16 projects used constant altitude method. The B-1B used constant altitude analysis 
method, though the points were flown using the constant weight/pressure ratio ( /tW δ ) method. 
The constant altitude method consists of choosing a range of weight and altitude conditions to 
cover the aircraft envelope and then flying each weight/altitude combination over a range of 
speeds. For an aircraft with a large weight fraction, this may mean flying up to six altitudes at up 
to three weights (heavy, mid, and light). This could mean a maximum of 18 weight/altitude 
combinations. Nevertheless, with a reasonable amount of thrust/drag/fuel flow analysis, this 
could be cut in half or more. Flying all three weights at the predicted optimum cruise /tW δ  is 
usually desirable. The altitudes are chosen by selecting six evenly spaced /tW δ ’s from 
minimum to maximum with one at the predicted optimum. The minimum is based upon 
minimum weight at a minimum altitude and the maximum is based upon the cruise ceiling 
defined as a climb capability of 300 feet per minute. The altitudes are then rounded to the nearest 
5,000 feet, which allows for easy flight manual comparisons since flight manuals typically have 
cruise charts at even 5,000-foot increments.  

For ease of flight manual comparisons, the data presented in reports are a specific range, or 
range factor versus Mach number at even 5,000-foot increments for standard weights, 
representing rounded values of heavy, mid, and light gross weight.  

11.6 Range Mission 

Range missions are performed to gain confidence in the performance data collected during 
climb, cruise, and descent. Rather than relying on fuel flow measurements and thrust/drag 
analysis, the primary measurement during a range mission is aircraft fuel quantity indications. 
The mission is performed by climbing to a given start cruise altitude, progressively stepping up 
in the altitude during constant altitude/Mach number cruise segments, and finally doing an idle 
power descent. Total fuel used is obtained from the fuel quantity system. A calibration of the fuel 
quantity system is obtained during the aircraft empty weight and fuel calibration. Using a 
performance simulation, the test day mission performance could be estimated. The simulation 
thrust/drag/fuel relationships were previously determined using data from several maneuvers 
including climb, cruise, and descent. The simulation estimates of fuel used were compared with 
measured fuel used during the mission. 

A practical reality of the flight test programs was that it was difficult to justify devoting an 
entire sortie to only a range mission. A compromise was to obtain fuel-used data during long 
cruise segments that often occurred during certain systems tests. During the B-1B project, fuel 
used data were acquired from several training sorties flown on production aircraft at Dyess AFB, 
Texas. The data came from constant airspeed/altitude segments of several hours in duration. A 
comparison of fuel used was made with simulation results. The differences were well within the 
often-quoted 3-percent accuracy for performance data. This provided a valuable confirmation of 
the flight test results.  
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11.7 Slow Accel-Decel 

A supplement, or perhaps even an alternative to cruise testing, is to do slow accels and 
decels. The data are used to build or verify a thrust versus fuel flow model. In addition, the data 
could be standardized to zero excess thrust. The maneuvers are flown sufficiently slowly to make 
the maximum correction to a range factor of about 10 percent. This compared with 1-percent 
corrections made to cruise data. We could estimate the zero excess thrust range factor from both 
the accel maneuver and the decel maneuver. The average of the accel and decel standardized 
range factors is a good estimate of zero excess thrust range factor since relatively small 
corrections are being made.  

The maneuver is done at a rate of less than 1 knot per 3 seconds to yield an accel/decel rate of 
about 20 times the cruise stabilization criterion. A typical accel/decel maneuver takes about 6 to 
12 minutes. The throttle is moved in small increments during the run to keep the accel/decel rate 
small, but not so small that the maneuver would take too long, thereby losing the advantage over 
stabilized cruise. If the cruise tests are done with a relaxed stabilization criterion (±100 feet and 
±2 knots in 20 seconds) with only 20 seconds of recorded data, then the dynamic cruise has an 
advantage over the slow accel-decel data. If it is desired to collect, thrust and fuel flow data over 
a range of conditions then the slow accel-decel is a good approach. 

11.8 Effect of Wind on Range 

The typical high altitude cruise for both fighter and transport aircraft is about 0.85 Mach 
number. The true airspeed for standard day in the lower atmosphere (troposphere) and upper 
atmosphere (stratosphere) can be computed using formulas from the airspeed section. For 
standard day from 11 kilometers (36,089 feet) to 20 kilometers (65,617 feet), the temperature is 
216.65 degrees K.  

a. 216.65661.48 0.85 487.5
288.15tV = ⋅ ⋅ =  knots 

The formula for specific range (nams per pound of fuel) is just true airspeed ( tV ) over fuel 
flow ( fW ).  

 t

f

VSR W=  (11.19) 

We can compute a specific range with respect to the ground as follows: 

 g
g

f

VSR W=  (11.20) 

Since groundspeed equals true airspeed minus wind and taking just the component parallel to 
the direction of flight (track angle): 

 t g wV V V= +  (11.21) 
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 ( )t w
g

f

V VSR W
−=  (11.22) 

Finally, the ratio of specific range with respect to the ground to the specific range with 
respect to the moving air mass (equation 11.22 divided by equation 11.19) is as follows: 

 ( )g t w

t

SR V V
SR V

−=  (11.23) 

As shown in Appendix A, wind speed at an ambient pressure of 200 millibars (mb) (38,661 
feet) averages about 40 knots above Edwards AFB. The average direction is about 215 degrees 
(S-W). Since wind direction is the direction from which the wind is blowing, an aircraft heading 
of 215 degrees would have a 40-knot headwind for this average Edwards wind. A headwind is a 
positive wind. For this condition, the range degradation would be: 

a. ( )487.5 40 0.918 8.2 percent487.5
gSR

SR
−= = =  degradation 

This is for an average wind if one were heading directly into the wind. A set of data collected 
for the cloverleaf paper (a portion of which is in the cloverleaf subsection of the air data system 
calibration section) had winds in excess of excess of 100 knots. This data were not included in 
this handbook, but was AFFTC data set number 2 in the referenced paper (Reference 10.2). In 
addition, the wind data shown Appendix A indicates a standard deviation of about 25 knots. 
Flying directly into a 100-knot wind would produce the following specific range degradation: 

a. ( )487.5 100 0.795 20.5 percent487.5
gSR

SR
−= = =  degradation 

One could just as easily be flying with that wind as a tailwind. 

a. ( )487.5 100 1.205 20.5 percent487.5
gSR

SR
+= = =  improvement 

In general, you would only be affected by the component of wind parallel to the flight 
direction. Wind vector relationships are discussed in detail Section 10.11. This wind effect is 
only relevant in computing physical (ground) nautical miles with a given wind. When collecting 
cruise data, you are flying with respect to the moving air mass.  
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12.0 ACCELERATION AND CLIMB 

12.1 Acceleration 

Accelerations are conducted for multiple purposes. First, to determine optimum climb 
schedules by observing the peak of specific excess power versus Mach number. The actual 
optimum occurs to the right of the peak of specific excess power ( sP ) versus M curves, 
depending on whether it is desirable to achieve a minimum time to climb or minimum fuel for 
fixed range. Second, to determine the obvious acceleration performance, i.e., fuel used, time, and 
distance to accelerate. Third, to determine drag/thrust/fuel flow models. Climb data can be used 
for this purpose also, however, accelerations are a more efficient method. The accelerations are 
conducted over a range of altitudes.    

The acceleration maneuver is performed wings level, 1-g, and fixed throttle at constant 
altitude.  Usually a climb or turn is done at the beginning of the run to get the engine thermally 
stabilized.  Then the aircraft accelerates to a point where the acceleration rate is reduced to a 
small value (less than 1 knot per 10 seconds).  The altitude is maintained constant during the run. 
Indicated altitude will jump as the aircraft passes through the transonic speed regime. Thus, it is 
necessary to maintain zero flight path angle usually by maintaining pitch attitude (θ ). Once 
through the transonic jump, an indicated altitude could be used for the rest of the acceleration. 
Modern aircraft with a head-up display (HUD) and INS have a velocity vector displayed on the 
HUD. Level flight through the transonic region is obtained by maintaining the velocity vector on 
the horizon.  

Figure 12.1 is a sample of some actual acceleration data. The data points have been corrected 
to standard conditions. Standard conditions consist of standard weight, pressure altitude, and 
standard day atmospheric conditions. The fairing is the result of modeling thrust and drag, then 
computing specific excess power from thrust and drag. With one relatively short maneuver, one 
obtains a range of speed (Mach number) at a given altitude. By performing accelerations at 
various altitudes, climb performance can be computed. However, a few continuous climbs need 
to be conducted to confirm that performance (time, distance, and fuel used) computed from 
accelerations yields the same result as that from climbs. Accelerations are also performed at 
elevated g levels. These are discussed in the turn section.  
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Specific Excees Power (ft/min) versus Mach Number
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Figure 12.1  Specific Excess Power from Acceleration 

12.2 Climb   

The climb maneuver is performed primarily as a check of predicted climb performance 
derived from acceleration data. Usually climbs are conducted at flight manual-predicted best 
climb speeds. Determination of actual best climb speeds requires an analysis using data from 
several sources, which include accelerations. The normal climb is a constant calibrated airspeed 
climb to a break altitude above which a Mach number is maintained constant. The climb 
continues to a climb ceiling (300 feet per minute rate of climb defined as the cruise ceiling). Data 
are standardized to the climb schedule, standard day, standard weight, and standard normal load 
factor. Thrust and drag data are obtained during the climb. The data are reduced at constant 
altitude increments rather than constant time increments to yield a more even distribution of data. 
A standard day rate of climb, time to climb, fuel used, gross weight, and distance traveled are 
plotted versus pressure altitude. A flight manual comparison is accomplished with this data. For 
high performance aircraft, there may be differences in performance accelerating through a Mach 
number/pressure altitude condition versus climbing through the same condition. This is due to an 
engine fuel control system lag. This effect needs to be taken into account. Climbs are usually 
terminated at the “cruise ceiling.” Climb ceiling definitions are given in Table 12.1. The 
definitions are from the flight manual specification.  
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Table 12.1 
CLIMB CEILING DEFINITIONS 

 
Ceiling 

Rate of Climb 
(ft/min) 

Combat 500 
Cruise 300 
Service 100 

Absolute 0 
 

12.3 Sawtooth Climbs 

As seen in Appendix B, one can expect to see large changes in wind speed and direction as a 
function of altitude. How this would impact climb performance was discussed in the effect of 
wind gradient portion of the altitude section. A comparison was made for an average day above 
Edwards AFB in January. The difference in delta energy altitude flying directly into a headwind 
versus flying directly into a tailwind was 1,308 feet. This was over a geometric altitude range 
from 14,605 to 23,937 feet, or a 14-percent difference in rate of climb. Before the advent of 
accelerometer and INS methods, climb data were attained using the sawtooth climb method.  

The sawtooth climb tests are a series of alternate heading climbs through a given altitude at a 
range of speeds. For each speed, a climb would be conducted through the aim altitude and 
airspeed and altitude data would be collected versus time. For instance, the aim altitude might be 
5,000 feet pressure altitude. Then test points would be chosen over a range of speeds to bracket 
the expected best climb speed. Depending upon the performance level of the aircraft, a start 
altitude would be determined. Then, the aircrew would establish a climb speed and climb power 
at that altitude and would collect data over an established data range, perhaps 4,500 to 5,500 feet, 
for instance. Then, you would descend back to the initial altitude of 4,000 feet and repeat the 
same airspeed point, but this time at an opposite heading angle (based upon magnetic compass). 
The idea here is that the average of these two points would be a zero wind gradient condition. 
Using the acceleration factor, you would correct the data to zero acceleration. A zero acceleration 
rate of climb is the rate of change of energy altitude.  

A sample of some actual flight test sawtooth climb data from an AC-119G (Figure 12.2) is 
shown Figure 12.3. Data were obtained from FTC-TR-69-4, AC-119G Aircraft Limited 
Performance and Stability and Control Test (Reference 12.1). This was one of the last AFFTC 
projects where sawtooth climbs were flown.  The thrust designation METO on Figure 12.3 
denotes Maximum Except for TakeOff.  
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Figure 12.2  AC-119G Aircraft 

Sawtooth Climbs: AC-119G Cruise Configuration METO Power
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Figure 12.3  AC-119G Sawtooth Climb Data 

We can take these data points, without distinguishing opposite headings, and present them in 
a different manner. Since we had two altitudes and two weights, let us attempt to minimize the 
weight effect in the data by computing the excess thrust. Then, take the excess thrust and divide 
by the pressure ratio (δ ) to minimize the altitude effect. The data are presented in Figure 12.4. 

 ex x t t
t

hF N W WV
 = ⋅ = ⋅ 
 
&  (12.1) 

The h&  is the zero acceleration rate of climb in Figure 12.3. The specific algorithms used to 
standardize that data can be found in AF TR No. 6273, Flight Test Engineering Handbook 
(Reference 12.2).  
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Sawtooth Climbs: AC-119G: Fex/delta versus Mach Number
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Figure 12.4  AC-119G Excess Thrust Data 

12.4 Continuous Climbs   

A climb could be done with any number of different climb schedules. A climb schedule is a 
speed or attitude variation with altitude. The most common type of climb is one that keeps 
calibrated airspeed ( CV ) constant until a given Mach number ( M ) is reached at which time 
Mach number is kept constant. A variation on that schedule is one in which calibrated airspeed is 
a function of altitude. Usually, both calibrated airspeed and Mach number may have been a 
function of gross weight ( tW ), but they do not vary during the climb. For high performance 
fighters (with installed thrust-to-weight ratios greater than 1) the initial part of the climb may be 
done at a constant pitch attitude (θ ) transitioning to a Mach number at a given altitude. 
Alternatively, the early part of the climb may be performed at less than maximum thrust. These 
types of climbs are required for high performance fighters when the aircraft has a longitudinal 
acceleration load factor greater than 1.00 and can accelerate flying straight up. The flight path 
angle for the constant θ  climb is as follows:   

 γ α θ= − +  (12.2) 

Other types of climbs are variable climb schedules such as a varying airspeed schedule, a 
constant true airspeed climb, or a varying Mach number climb.  The C-130H climb schedule is an 
example of a varying calibrated airspeed climb.  At 150,000 pounds gross weight at sea level the 
recommended schedule is 181-knots calibrated airspeed while at 20,000 feet the climb speed is 
down to 166 knots. In contrast, most aircraft use a constant calibrated airspeed/Mach number 
climb schedule. 
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Accelerations and climbs are both fixed throttle maneuvers. They are usually done with 
power settings like MIL or MAX.  Decelerations and descents are usually done in power settings 
such as IDLE, though there could have been a MIL power deceleration under certain conditions 
such as supersonic. 

12.5 Climb Parameters  

 /R C H= &   

 
0

1 t tV dVAF
g dH

   = + ⋅   
  

 (12.3) 

where: 

/R C  = rate of climb (ft/sec), and 
AF  = acceleration factor. 

12.6 Acceleration Factor (AF) 

The acceleration factor ( AF ) is used in climb performance as a simple conversion between a 
rate of change of tapeline or geopotential altitude and rate of change of energy altitude.  

a. EHAF
H

=
&

&
  

Most aircraft climbs are conducted by either holding calibrated airspeed ( CV ) or Mach ( M ) 
number constant. In reality, the calibrated airspeed or Mach number is not exactly constant but let 
us make some calculations assuming that they are held exactly constant and that there is zero 
wind so that true airspeed ( tV ) and inertial speeds ( gV ) are identical. The true airspeed vector 
defines the flight path (or wind) axis. The component of aircraft acceleration parallel to the flight 
path is the longitudinal acceleration ( xA ). The longitudinal load factor ( xN ) is simply the xA  
divided by the acceleration of gravity ( 0g ). In conventional aircraft performance, g is assumed a 
constant at the reference gravity and given the value of 32.174 ft/sec². Figure 12.5 is a 
representation of acceleration factor for climb at constant calibrated airspeed.  
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Constant Calibrated Airspeed Acceleration Factor
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Figure 12.5  Acceleration Factor – Constant Calibrated Airspeed 

The discontinuity in Figure 12.5 at 36,089 feet is due to the transition from a temperature 
decreasing with altitude to a constant temperature. The above chart is for a standard atmosphere. 

12.6.1 Two Numerical Examples for AF 

To illustrate the importance of the concept of AF , let us illustrate AF  by two numerical 
sample cases. The two cases will cover the range from a high-speed, high-altitude fighter to a 
low-speed, low-altitude aircraft.  

12.6.1.1 Case 1 

High speed, high altitude, high performance typical of a fighter type aircraft: 

a. For case 1, assume the following flight conditions: 

1. H  = 30,000 feet, and 

2. M  = 0.900. 

For standard conditions, we could compute the values for calibrated and true airspeed, using 
the equations found in the airspeed section of this text. Please note that we are listing the 
numbers to at least one more significant figure than our limits of flight test data accuracy. The 
following additional significant figures are necessary to make the computations accurately:  

1. CV  = 346.24 knots, and 
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2. tV   = 530.39 knots = 895.19 feet/sec. 

Then, 

b. At 31,000 feet and 0.900 Mach number: 

1. CV  = 338.90 knots, and 

2. tV  = 528.09 knots = 891.31 feet/sec (Note that the aircraft is decelerating while 
climbing at a constant Mach number.). 

Now we could numerically calculate the AF : 

 / t
t

VdV dH
H

∆=
∆

 

 
( )

( )
( )0

891.31 895.19
2 891.31 895.19

1 1 0.8923
32.174 31,000 30,000

t tV VAF
g H

  +
   −  ∆    = + ⋅ = + ⋅ =     ∆ −  
 
 

 

For a sP  of 200 feet per second, the /R C  would be 224.1 feet second.  

 200/ 224.1
0.8923

EHR C
AF

= = =
&

 

For a climb through 30,000 feet holding a constant calibrated airspeed of 340 knots, the AF  
computes to 1.3576 for a /R C  of 147.3 feet per second. The difference in rate of climb between 
holding constant Mach number versus constant calibrated airspeed is 52 percent. This illustrates 
how large an effect the acceleration factor could be and that it certainly needs to be taken into 
account. The percentage difference gets proportionately smaller at lower airspeeds. 

12.6.1.2 Case 2 

The second case is what is a typical climb for a light aircraft. Assume a 100-knot calibrated 
airspeed climb through 5,000 feet. The difference in rate of climb between a constant calibrated 
airspeed and a constant Mach number climb is now down to just 1.9 percent. At a sP  of 1,000 fpm, 
the rate of climb at a constant Mach number is 1,003.7 fpm and the rate of climb at constant 
calibrated airspeed is 984.8. This is small, but not small enough to ignore. Below 36,089 feet in the 
standard atmosphere, a constant calibrated airspeed climb would be accelerating in true airspeed and 
hence, rate of climb would be less than the specific excess power. Conversely, below 36,089 feet in 
the standard atmosphere in a constant Mach number climb, the true airspeed would decrease with 
increasing altitude (Figure 12.6). Above 36,089 feet, when temperature is a constant with altitude 
for the standard atmosphere, the true airspeed is a constant for a constant Mach number. Hence, 
the acceleration factor would be 1.00 at all Mach numbers. Keep in mind that Figure 12.6 is for 
standard day. 
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Figure 12.6  Acceleration Factor – Constant Mach Number 

12.7 Normal Load Factor During A Climb  

To derive the formula for the normal load factor in a climb, consider the aircraft flying in a 
pullup maneuver. Figure 12.7 illustrates the vectors during a pullup. The first velocity vector ( tV ) 
is at a flight path angle of 1γ . The second tV  is at 2γ . The magnitude of the change is 
exaggerated, but consider the change infinitesimal. The aircraft rotates about a point C , with a 
radius R . The acceleration perpendicular to the flight path (ignoring gravity) is a centripetal 
acceleration.  

Figure 12.7

C
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  Centripetal Acceleration Diagram 



 153

The centripetal acceleration is as follows: 

 
2

tVa
R

=  (12.4) 

The radius is related to the linear velocity through the angular velocity (ω ). 

 tV Rω= ⋅  (12.5) 

The angular velocity ω  is just the derivative of the flight path angle. 

 ( )
( )

2 1

2 1

d
dt t t t

γ γγ γω γ−∆= = = =∆ −
&  (12.6) 

Solving for the radius R  in equation 12.5 and substituting into the acceleration equation 12.4: 

 
2

t
t

t

Va V
V

γ

γ

= = ⋅
  
 

&

&

 (12.7) 

Adding in the component of gravity yields: 

 0 cos ta g Vγ γ= ⋅ + ⋅ &  (12.8) 

Finally, dividing by 0g  yields the load factor in the normal axis. 

 
0

cos t
z

VN
g
γγ ⋅= +
&

 (12.9) 

The above equations are valid for constant winds. Usually, the load factors are computed 
from INS velocities and angles plus true airspeed to enable a transformation from the inertial axis 
to the flight path axis. What is desired are inertial accelerations in the wind (or flight path) axis. 
Therefore, if the aircraft has an INS, and the appropriate software to do the axis transformations, 
then there is no need to be concerned about horizontal winds and wind gradients. In addition, the 
difference between a tapeline rate of climb and pressure altitude rate of climb is taken into 
account, since the INS yields geometric rate of climb.  The INS data is, however, sensitive to the 
presence of any vertical winds, so efforts are made to fly in areas where no vertical winds are 
expected. For Edwards AFB, the best place to conduct performance tests is over the ocean. Both 
the B-1B and C-17A aircraft conducted their entire cruise testing over the ocean. 

12.8 Descent  

A typical descent schedule is a constant Mach number intersecting a constant calibrated 
airspeed. The data are used to generate descent performance, an idle thrust map, and drag polar 
information to complete the performance model. The performance model is used to check 
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mission performance. The idle power descent could be accomplished with speed brakes 
extended. 

12.9 Deceleration  

Decelerations are conducted to provide data to compute descent performance. A deceleration 
is performed by accelerating to the Mach number limit then moving the throttle to idle and 
conducting a wings level, constant altitude deceleration. This maneuver gives us idle thrust 
versus speed. Due to inaccuracies in the in-flight thrust deck, there could be a drag difference at 
idle thrust versus drag polar data acquired at higher power settings. The same maneuver could be 
accomplished with the speed brakes extended. 

SECTION 12.0 REFERENCES 

12.1 Pape, James K. and McDowell, Edward D., AC-119G Aircraft Limited Performance and 
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12.2 Herrington, Russel M., et al, Flight Test Engineering Handbook, AF TR 6273, AFFTC, 
Edwards AFB, California, revised January 1966. 
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13.0 TURNING 

13.1 Introduction 

Turning performance is defined as flight at other than 1 g, usually in the horizontal plane. 
There are four different types of turns: accelerating or decelerating, thrust-limited, stabilized, and 
lift-limited. 

13.2 Accelerating or Decelerating Turns 

Accelerating or decelerating turns are performed at a fixed throttle, constant g, and constant 
altitude. For accelerating turns, the maneuver is done by starting fast, applying specified throttle, 
and pulling into a turn to decelerate the aircraft. Next, reduce g level to the specified value and 
accelerate to either the specified Mach number or the maximum speed. The data acquired could 
be used to generate energy maneuverability charts or to contribute to the aircraft drag, thrust, and 
fuel flow model. 

Turns at fixed g, constant altitude, and fixed throttle are referred to as accelerating or 
decelerating turns. Turns, in general, are used to quantify the turning performance capability of 
the aircraft and to help in the development of the drag and lift curves. With the advent of 
dynamic performance, fewer turns are conducted in flight test. Turns are used primarily to check 
the performance model created from 1-g acceleration and dynamic performance maneuvers. 
Nevertheless, some turns are still necessary as confidence builders in the model and to 
demonstrate specification performance.  

13.3 Thrust-Limited Turns   

A thrust-limited turn is a turn where the pilot attempts to maintain throttle setting, Mach 
number, and pressure altitude while varying normal load factor. Usually about 30 seconds or 180 
degrees of turn data are recorded at stabilized conditions; however, maintaining stabilized 
conditions is often difficult. The data are used to verify the thrust/drag model for sustained g and 
to assist in the development of the drag and lift curves. The data are collected at a stabilized g 
and as such, may be of higher quality than data from dynamic maneuvers. Nevertheless, keep in 
mind that the thrust-limited turn is dynamic since it is at elevated g values (and large pitch rates) 
and may be at different power settings than the dynamic performance data. There may have been 
throttle effects on the drag polar due to inaccuracies in the in-flight thrust computation. One 
value of thrust-limited turns is it produces thrust data that is stabilized while accelerations and 
decelerations are dynamic in thrust. So, the lag time constant for thrust could be estimated. With 
fuel controls scheduling on total temperature in the inlet, there may be a different lag constant 
depending on whether the aircraft is climbing or accelerating through a point. The thrust-limited 
turn is stabilized at a given Mach number and pressure altitude condition. As with accelerating or 
decelerating turns, only a limited number of sustained or thrust-limited turns are performed 
because they are very fuel and time-consuming tests compared with the more efficient dynamic 
maneuvers. It is still necessary to perform a limited number of turns as checks on the model. It 
has been necessary on past projects to do significant numbers of turns because of disagreements 
between turn data and dynamic data on the drag polar. Developing correlation factors to adjust 
the drag polars to match the measured turn performance may be necessary. Not relying 
completely upon data obtained from dynamic performance maneuvers is important.  
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Using an INS for flight path accelerations requires a 1-g level run be accomplished before the 
turn to get a wind calibration.  This applies to all turning maneuvers.  Winds are computed from 
the wind calibration maneuver assuming zero sideslip. These winds are assumed to remain 
constant during the turn. The thrust and fuel flow data obtained in climbs and acceleration is 
dynamic and subject to engine and instrumentation lag.  It is possible to attain lag time constants 
by comparing thrust-limited turn data to climb and acceleration data. 

13.4 Stabilized Turns  

Stabilized turns are turns where Mach number, pressure altitude, and normal load factor are 
specified and throttle is varied to obtain a stabilized condition. These maneuvers are useful to 
obtain lift and drag data at specific points along the drag and lift curves and to check for 
specification compliance. The flight test objective is to determine if such conditions can be 
achieved in stabilized flight at something less than or equal to maximum throttle. Another way to 
evaluate that spec point would be to do a thrust-limited turn at MAX thrust at the specified flight 
conditions and then determine whether the desired normal load factor in stabilized flight is 
achieved. Specs are usually written for standard day at a standard weight, center of gravity, etc. 
Therefore, you must correct the data to standard conditions to determine spec compliance since 
the spec may have been missed on the test day but the aircraft would have achieved the spec on a 
more favorable standard day. For the stabilized turn, you would have needed some specialized 
software to perform the standardization or the turn could have been standardized assuming it is 
an accelerating turn at a given pressure altitude, Mach number, and normal load factor, then 
determine the flight path acceleration for standard conditions. If the longitudinal flight path load 
factor ( xN ) was positive for the given spec conditions, then the spec condition was met. 

13.5 Lift-Limited Turns   

When it is desired to determine limit performance at the angle-of-attack (α ) limit or the 
normal load factor ( zN ) limit then a lift-limited turn is performed. If the aircraft has an α/g 
limiter, as is the case on the F-16, then the turn is a full aft stick maneuver. Otherwise, the pilot 
must observe the flight manual limits, which makes this maneuver very difficult to fly without 
exceeding aircraft limits. The angle-of-attack limited portion of the maneuver is used to quantify 
the lift coefficient at the limit angle of attack and to check the angle-of-attack calibration at the 
limit. The check of angle of attack is performed with INS data. This maneuver produces data at 
the highest limits of the drag polar and the lift curve. You also obtain limited angle-of-attack data 
from a split-s. The split-s maneuver is discussed in the dynamic performance section.  

Lift-limit and g-limit turns are accomplished by accelerating to limit speed then pulling into a 
maximum allowable g turn and allowing the aircraft to decelerate to the lift limit. This defines the 
lift limit and g limit performance. The throttle setting is usually MIL or MAX, but the maneuver 
may be done at any power setting. Besides getting limit performance, drag polar data at or near 
maximum lift coefficient are obtained.  
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13.6 Turn Equations  

13.6.1 Normal Load Factor 

The transformation equations for load factors from the body axis system to the flight path 
axis are as follows (ignoring sideslip):  

 
cos sin
sin cos

xbx

zbz

NN
NN

α α
α α

    
= ⋅     −− −    

 (13.1) 

The normal load factors are positive up – necessitating a modification to the equations in this 
original text. The additional sideslip transformation matrix is given in the Accelerometer 
Methods subsection of the Flight Path Accelerations section. The inverse transformation from the 
flight path axis to the body axis is as follows: 
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 (13.2) 

where: 

xN  = flight path axis longitudinal load factor, 

zN  = flight path axis normal load factor, 

xbN  = body axis longitudinal load factor, and 

zbN  = body axis normal load factor. 

For a constant altitude, constant speed turn, the normal load factor in the wind (flight path) 
axis system in terms of the turn rate can be derived in a similar manner as the formula for normal 
load factor in a climb. There are two components. One, the vertical component is exactly 1.0, for 
the ideal case of exactly constant altitude. Two, the horizontal component is a centripetal 
acceleration. Figure 13.1 shows these vectors.  

 zN  zvN  
 
 
 
 
 
 
 
 

 zhN  

Figure 13.1  Normal Load Factor Vectors In a Turn 
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Where gσ  is the ground track angle and the assumption of zero wind is made. With the same 
idealized assumptions of constant altitude, constant speed, and zero wind, the normal load factor 
in terms of the bank angle can be determined as shown in Figure 13.2. 

 
Figure 13.2  Banked Turn Diagram 

Where: 

1.0zvN = , and 

1cos zv

z z

N
N Nφ = = . 

Hence,  

 1
coszN φ=  (13.5) 

What both of the zN equations have in common is that they rely upon unrealistic 
idealizations of zero wind and exact constant altitude and speed. In flight test, either 
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accelerometer methods or INS methods are used to compute the actual flight path axis load 
factors. 

13.6.2 Turn Radius 

In a steady, level turn the centripetal acceleration is the horizontal component of normal 
acceleration. The vertical component is 1-g; just the right amount to maintain exactly constant 
altitude for this idealized relationship. 
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t
zh

VA
R

=  (feet/sec2) (13.6) 

where: 

R  = turn radius (ft), 
tV  = true airspeed (ft/sec), and 

zhA  = horizontal component of normal acceleration (ft/sec2). 

From trigonometry: 

 ( )2 1zh zN N= −  (13.7) 

and, 
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Substituting equations 13.7 and equations 13.8 into equations 13.6 and solving for R : 
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For R  in feet and tV  in knots: 
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 (13.9) 

13.7 Turn Rate 

Once the turn radius is determined (equation 13.9), we can compute the turn rate. The 
relationship derives from the kinematics of constant speed rotation about a point.  

 tV Rω= ⋅  (13.10) 
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where: 

R  = radius of turn, and 
ω  = turn rate. 

The symbology we previously used for turn rate was σ& ; the rate of change of ground track 
angle.  Then, solving for turn rate: 

a. t
g

V
Rσ =&  

The above equation is valid for units of R  in feet, tV  in feet per second and gσ&  in radians 
per second. For R  in feet, tV  in knots and gσ&  in degrees per second we get: 
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13.8 Winds Aloft 

Since the advent of the INS in the 1970s, it has been possible to compute accurate values of 
air data parameters in dynamic maneuvers such as turns. However, this required the use of wind 
calibration runs conducted in wings-level 1-g flight where the air data system errors were known 
from conventional tests. In addition, INS data had small drift errors in the groundspeeds. With 
the availability of the GPS in the 1990s, an accurate value of groundspeed was available. The 
mathematics and illustrating data for one such technique used in turning flight (that does not 
require the use of a wind calibration) will be presented.  

The INS gives you six parameters of interest for performance and flying qualities. These are 
three angles called Euler angles and three velocities in the north ( N ), east ( E ) and down ( D ) 
directions. The Euler angles are the heading from true north designated psi (ψ ), the roll (or 
bank) angle designated phi (φ ), and the pitch attitude designated theta (θ ). The groundspeed 
components from an INS are gNV , gEV , and gDV .  The problem is that we assumed we knew the 
groundspeeds accurately. We didn’t! The typical drift rate of an INS was on the order of 1 
nautical mile per hour. Therefore, we had typical errors of about 1 knot in the horizontal 
groundspeeds at any one time. Now (late 1990s) we have a new device designated as embedded 
GPS/INS (EGI). This combines the outputs of an INS with the velocities and position data from 
the GPS using a filter. The GPS specification accuracies for the horizontal speeds are 0.1 m/sec 
(0.19 knot). This small error does not drift with time. Therefore, we have introduced a new level 
of accuracy into our data. Now, we will proceed to develop the equations starting with the basic 
vector relationship of true airspeed, groundspeed, and wind.   

 t g wV V V= +
r r r

 (13.12) 

Solving for the magnitude of the true airspeed vector: 
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ti t gN wN gE wE gD wDV V V V V V V V + ∆ = + + + + +  
 (13.13) 

We will assume the vertical wind is zero. Taking the square of both sides: 

 ( ) ( ) ( )2 22 2
ti t gN wN gE wE gDV V V V V V V + ∆ = + + + +  

 (13.14) 

From here on in the derivation, we will simply strive to minimize the sum of the difference 
between the left and right side of the above equation. Defining a parameter we shall call F* (F – 
star), we want to minimize the sum of this parameter simultaneously with respect to each of the 
three unknowns ( wNV , wEV , tV∆ ). The iteration is the method of Taylor’s series in three 
dimensions:  

 ( )2 2 2 2* 0.5 tx ty tz tF V V V V= ⋅ + + −  (13.15) 

The 0.5 factor is just to eliminate ½ factors in the final formulation. 

 tx gN wNV V V= +  (13.16) 

 ty gE wEV V V= +  (13.17) 

 tz gDV V=  (13.18) 

 t ti tV V V= + ∆  (13.19) 

Defining three more parameters: ,f g  and h : 

 *

1

N

i tx
i

f F V
=

= ⋅∑  (13.20) 

 *

1

N

i ty
i

g F V
=

= ⋅∑  (13.21) 

 *

1

N

i t
i

h F V
=

= ⋅∑  (13.22) 

There are N  data points and N  must be at least three. The , ,x y z  unknowns are as follows: 

a. wNx V= , 

b. wEy V= , and 
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c. tz V= ∆ . 

We will assume zero initial estimates for the unknowns. 

a. 0x y z= = =  

In addition, initialize , ,f g h  and the partial derivatives to zero as follows:  

a. 0f g h= = = , 

b. / / / 0f x f y f z∂ ∂ = ∂ ∂ = ∂ ∂ = , 

c. / / / 0g x g y g z∂ ∂ = ∂ ∂ = ∂ ∂ = , and 

d. / / / 0h x h y h z∂ ∂ = ∂ ∂ = ∂ ∂ = , 

Next we will generate a matrix of partial derivatives of ,f g and h . Summing from one to 
N :  

 ( )2 *

1
/

N

tx
i

f x V F
=

 ∂ ∂ = + ∑  (13.23) 

 ( ) ( )
1

/ ( ) ( )
N

ty tx
i

f y V i V i
=

 ∂ ∂ = ⋅ ∑  (13.24) 

 ( ) ( )
1

/ ( ) ( )
N

t tx
i

f z V i V i
=

 ∂ ∂ = − ⋅ ∑  (13.25) 

 ( ) ( )
1

/ ( ) ( )
N

tx ty
i

g x V i V i
=

 ∂ ∂ = ⋅ ∑  (13.26) 

 ( )2 *

1
/ ( )

N

ty
i

g y V i F
=

 ∂ ∂ = +  ∑  (13.27) 

 ( ) ( )
1

/ ( ) ( )
N

t ty
i

g z V i V i
=

 ∂ ∂ = − ⋅ ∑  (13.28) 

 ( ) ( )
1

/ ( ) ( )
N

tx t
i

h x V i V i
=

 ∂ ∂ = ⋅ ∑  (13.29) 

 ( ) ( )
1

/ ( ) ( )
N

ty t
i

h y V i V i
=

 ∂ ∂ = ⋅ ∑  (13.30) 
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 ( )2 *

1
/ ( )

N

t
i

h z V i F
=

 ∂ ∂ = − + ∑  (13.31) 

The following matrix formulation will solve for improved values for the unknowns:  

 

1

1

/ / /
/ / /
/ / /

wN wN

wE wE

t tj j

V V f x g x h x f
V V f y g y h y g

V V f z g z h z h

−

+

∂ ∂ ∂ ∂ ∂ ∂       
      = − ∂ ∂ ∂ ∂ ∂ ∂ ⋅      
      ∆ ∆ ∂ ∂ ∂ ∂ ∂ ∂ −       

 (13.32) 

With improved values for the unknowns, simply return to the beginning of the algorithm and 
repeat the process until convergence occurs. This will usually occur after just a few steps. The 
parameter j  is the iteration number. We now have the north and east components of wind and 
the previously unknown error in true airspeed.  



14.0 DYNAMIC PERFORMANCE 

14.1 Introduction    

Dynamic performance typically involves the collection of lift and drag data at near constant 
Mach number with maneuvers that last less than 15 seconds. This is accomplished by varying 
normal load factor ( zN ) in a short time period. There are three dynamic performance maneuvers: 
roller coaster, split-s, and windup turn.  

14.2 Roller Coaster    

The roller coaster is a smooth sinusoidal variation of load factor versus time. The maneuver 
begins with a stabilized trimmed point at an aim Mach number, altitude ( CH ), and zN  = 1.0. The 
throttle is kept constant during the maneuver. The maneuver is also called a pushover-pullup 
because that is what is done. The maneuver begins with a pushover to a g level less than 1.0. On 
fighter aircraft that is usually to an zN  of 0.0 and on transport aircraft that is usually to an zN  of 
0.5. Then a pullup is performed back through zN  of 1.0 to an zN  of 1.5 on transport aircraft, or 
2.0 or more on fighter aircraft. Some fighter projects used a maximum zN  of more than 2.0 and 
some have used an aim angle of attack (α ) instead of a maximum load factor as the maximum 
point in the roller coaster. This maximum α  is usually (but not always) something less than the 
limit α . This is because a large maximum α  would produce large Mach number losses during 
the maneuver because the aircraft is at a high drag condition at a positive flight path angle (γ ) 
and is decelerating very rapidly. After attaining maximum zN  then a pushover is performed back 
to zN   = 1.0.  

The rate of change of zN  is between 0.25 and 0.50 g per second. The slower rate would 
produce larger Mach number variations but would also produce smaller rate effects on the data. 
Both Mach number and rate corrections are made to the data; therefore, the maneuver will take 
an average of 8 seconds to perform. Generally, there is a net altitude loss during the maneuver 
and a net Mach number loss, but both are quite small. The Mach number loss is usually no more 
than 0.01 and the altitude loss is less than 1,000 feet. If zN  is more than 2.0 during the pullup, 
then the Mach number loss could be more than 0.01, but corrections are made to the data to 
nominal Mach numbers. Nominal Mach numbers would typically be 0.70, 0.80, 0.85, 0.90, etc. 

A simulation of a roller coaster maneuver was conducted. The aircraft drag model was the 
same as for the takeoff simulation presented in the takeoff section. This was for a pseudo F-16 
aircraft. For a lift coefficient less than 0.6 and low Mach numbers where compressibility is not 
substantial, Figure 14.1 represents the drag polar used.   
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Lift Coefficient versus Drag Coefficient
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Figure 14.1  Drag Model 

The initial condition chosen to illustrate the roller coaster is 0.6 Mach number at 30,000 feet 
pressure altitude, standard day. The first data point was at zN  = 1.0 and then thrust was set equal 
to the drag at that point and kept constant during the remainder of the maneuver. The xN  and 

zN  formulas used are those derived in earlier sections for non-banked flight as follows: 

 
0

t
x

t

V HN
g V

= +
& &

 (14.1) 

 
0

cos t
z

VN
g
γγ ⋅= +
&

 (14.2) 

A sinusoidal variation of normal load factor was chosen to produce a period of 4 seconds 
with amplitude of 1.0 g.  The time histories of normal load factor, Mach number, and pressure 
altitude are shown in Figures 14.2, 14.3 and 14.4. As shown, there is a relatively small loss in 
altitude (80 feet) and gain in Mach number (0.004). However, for a fighter type aircraft, the range 
of ,LC α  is small. On the positive side, due to the slow zN  variation, the noise in the data is 
usually quite low.  
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Roller Coaster Simulation: Normal Load Factor versus Time
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Figure 14.2  Roller Coaster Normal Load Factor 

Roller Coaster Simulation: Altitude versus Time
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Figure 14.3  Roller Coaster Altitude Time History 
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Roller Coaster Simulation: Mach Number versus Time
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Figure 14.4  Roller Coaster Mach Number Time History 

14.3 Windup Turn    

The windup turn begins at wings level trimmed at an aim Mach number and altitude. The 
throttle is kept constant during the maneuver because most in-flight thrust computer programs are 
ineffective at computing thrust accurately during throttle transients. Then, the aircraft is gradually 
pulled into a turn, at a rate of up to 1.0 g per second, until a limit condition on zN  or α  is 
reached. This usually takes no more than 8 seconds and is often as little as 3 seconds. The aircraft 
is pointed downhill during the maneuver to minimize the Mach number loss during the high-g 
maneuver as drag gets very high and the aircraft decelerates rapidly. The aircraft is trading 
altitude for airspeed. Since the maneuver only lasted a few seconds, even large deceleration rates 
would not vary the Mach number more than about 0.02. There is also an altitude loss during the 
maneuver of up to 2,000 feet. The total maneuver, including the recovery, could produce an 
altitude loss of up to 10,000 feet as the aircraft ends up pointed nearly straight down at the 
conclusion of the maneuver. A better maneuver to perform is a pure inverted pullup, which is a 
portion of a split-s.  

14.4 Split-S   

The split-s is a fighter tactics maneuver used to change direction and altitude very rapidly. A 
portion of the maneuver is an inverted pullup during which zN  is varied from near 1.0 to the 
limit g of the aircraft. This is ideal to collect dynamic performance data. The aircraft is trimmed 
at an aim Mach number and altitude. The throttle is kept constant during the maneuver to give an 
accurate thrust computation. The aircraft is rolled inverted  
(180 degrees roll angle) and an inverted pullup is performed at a rate of up to 1.0 g per second to 
the limit zN  or α . This takes approximately 3 to 8 seconds. No attempt is made to minimize the 



 168

Mach number variation, but the Mach number usually decreases no more than 0.02 during the 
data portion of the maneuver, which is less than 8 seconds. As with the wind-up turn, an altitude 
loss of up to 2,000 feet during the data acquisition portion of the maneuver is typical, but the total 
maneuver including recovery could produce an altitude loss of up to 10,000 feet. We attempt to 
collect data from pitch attitudes (θ ) of 0 to about  
70 degrees to avoid getting data during the INS transition through 90 degrees of θ  at which the 
heading (ψ ) changes by 180 degrees. This would often dictate the g onset rate since it is desired 
to achieve maximum g or α  before the aircraft reaches about a negative 70 degrees pitch angle. 
This maneuver is better than the windup turn for data processing with an INS since there are only 
small bank angle (φ ) variations from 180 degrees and terms in the INS equations involving φ  
are negligible. We also did not have any significant roll rate effects.  

To illustrate the split-s, a simulation is shown. The drag model was modified, from that used 
for the roller coaster, with the addition of a separation drag term as follows: 

 ( )20.5 0.6D LC C∆ = ⋅ −  (14.3) 
 0 if 0.6D LC C∆ = <  

The xN  formula is identical to the one used for the roller coaster; however, the zN  formula 
is the negative of the roller coaster formula. This can be seen from the axis transformations in the 
excess thrust section. The transformation for zN  involves sinφ  and cosφ  terms. For the pure 
inverted case ( 180φ = degrees): 

a. sin 0φ = , and 

b. cos 1φ = − . 

Then, 

 
0

cos t
z

VN
g
γγ

 ⋅= − + 
 

&
 (14.4) 

Figure 14.5 plots the drag model used. The simulation was performed at a rate of 1.0 g per 
second. The simulation was ceased at a lift coefficient of 1.60. The initial conditions chosen were 
30,000 feet and a Mach number of 0.85.  
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Split-s and Pullup Drag Model: CL versus CD
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Figure 14.5  Split-S Drag Model 

The time-history parameters of normal load factor, Mach number, and pressure altitude 
follow in Figures 14.6 through 14.8. 

Split-S Simulation: Nz versus Time
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Figure 14.6  Split-S Normal Load Factor 
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Split-s Simulation: Mach Number versus Time
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Figure 14.7  Split-S Mach Number Time History 

Split-S Simulation: Pressure Altitude versus Time
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Figure 14.8  Split-S Altitude Time History 

14.5 Pullup 

On the F-15 projects, a pullup maneuver has been used in lieu of the split-s to obtain high-
α data. They have found that the pullup maneuver has one big advantage over the  
split-s. That is, there is no need to recover back to the original altitude. A simulation for the 
pullup was conducted using the same drag model and initial conditions as for the split-s. The 
pullup simulation was conducted at the same g onset rate of 1.0 g per second. In addition, the end 
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condition of 1.60LC = was the same. The Mach number and pressure altitude time histories are in 
Figures 14.9 and 14.10. 

Pullup Simulation: Mach Vs Time
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Figure 14.9  Pullup Mach Number Time History 

Pullup Simulation: Altitude Vs Time
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Figure 14.10  Pullup Altitude Time History 

Table 14.1 compares the initial conditions and end conditions of the pullup and the  
split-s. 
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Table 14.1 
PULLUP AND SPLIT-S INITIAL AND END CONDITIONS 

  
zN  

 
M  

tV  
(kts) 

CH  
(ft) 

H&  
(ft/sec) 

tV&  
(kts/sec) 

Initial 1.00 0.850 500.9 30,000 0.0 0.0 
Pullup 6.450 0.785 462.3 30,219 +226.0 -58.7 
Split-S 6.936 0.800 472.8 29,452 -428.2 -45.1 

 
As can be seen, the split-s has the advantage of not losing as much Mach number. However, 

the pullup does not end up with a very large vertical velocity.   

14.6 Angle of Attack   

During the roller coaster, pullup, and split-s maneuvers the computation of angle of attack 
from the INS is quite simple for bank angles near 0 or 180 degrees. In practice, the full 
transformation equations are used.  

 ( 0)α θ γ φ= − =  roller coaster and pullup (14.5) 

 ( 180)α θ γ φ= − + =  split-s (14.6) 

The roller coaster maneuver, particularly, could be used to calibrate production angle-of-
attack probes or vanes. Only for very high angle of attack would you want to use the split-s for 
calibration of production systems. The above equations are simplified for illustration purposes 
only. The full equations involved bending and rate corrections and allowance for being off 
exactly φ  = 0 or 180 degrees. As discussed in the flight path acceleration section, the one 
shortfall of the INS method is that vertical wind is assumed zero. You can detect vertical wind by 
comparing data on the lift curve. 

a. ( ),Lf C Mα =  

In addition, one can use an INS method to calibrate angle of attack during turns. The turn, 
especially a high-g (high bank angle) turn, will be less sensitive to vertical wind since the vertical 
component of velocities in the angle-of-attack formula is proportional to the cosine of the bank 
angle.  

14.7 Vertical Wind 

If there is an unexplained bias in your data, then it could be that there is a vertical wind. One 
way to minimize the effect of vertical wind is to do a varying g maneuver during a stabilized 
high-g turn, keeping the bank angle (φ ) near 90 degrees. Since you are not trying to get drag 
data, the throttle could be varied to maintain speed. The vertical wind would not affect the turn 
data as much, since the vertical wind is nearly perpendicular to the axis of the angle of attack.  
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15.0 SPECIAL PERFORMANCE TOPICS 

15.1 Effect of Gravity on Performance   

Below is the international gravity formula as adopted by the International Union of Geodesy  
and Geophysics as presented in Britannica  Online.  

 2 4
0 978.03185 1 0.005278892 sin 0.000023462 sinγ ϕ ϕ = ⋅ + ⋅ + ⋅  cm/sec2  (15.1) 

Where the symbology used by the International Union is as follows: 

a. 0γ  = sea level gravity (cm/sec2), and 

b. ϕ  = latitude (degrees). 

In this text, we have used a rather simplified gravity model of g = constant = 32.174 ft/sec2. 
As of the writing of this text, that simplification is widely used in the conventional aircraft flight 
testing community. This topic will address the magnitude of error that this simplification 
produces. As will be seen, the error is quite small (<1 percent), but not zero.  

First, we will take the liberty of changing the International Union’s sea level gravity 
symbology from 0γ  to 0g .   

Consider only a 1-g flight where the aircraft is unbanked and has zero vertical velocity and 
zero rate of change of vertical velocity. Under these conditions, the normal load factor ( zN ) 
would not be precisely 1.00. There are four variables: latitude, altitude, speed, and heading.  We 
will consider them individually. 

The internationally agreed upon exact conversion factor between meters (or metres in Great 
Britain) is 0.3048 (divide meters by 0.3048 to yield feet) and the number of centimeters (cm) in a 
meter is 100. Given that and using equation 15.1, some typical values of sea level gravity are 
shown in Table 15.1. 
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Table 15.1 
EFFECT OF LATITUDE ON GRAVITY AT SEA LEVEL 

 
 
 

Place 

 
 

Latitude 
(deg) 

 
g 

9.80665 
(m/sec2) 

 
g 

32.17405 
(ft/sec2) 

Variation 
from the 
Standard 

(pct) 
Reference North Pole 90.00 9.8322 32.2578 0.26 
Northern Greenland 80.00 9.8306 32.2526 0.24 
Pt. Barrow, Alaska 71.00 9.8267 32.2397 0.20 
Arctic Circle 66.50 9.8239 32.2306 0.18 
Anchorage, Alaska 62.00 9.8207 32.2202 0.14 
St. Petersburg, Russia 60.00 9.8192 32.2151 0.13 
Copenhagen 55.50 9.8155 32.2031 0.09 
London, England 51.30 9.8118 32.1911 0.05 
Lake of the Woods, Minn. 49.33 9.8101 32.1854 0.04 
45 deg latitude 45.00 9.8062 32.1725 0.00 
Bldg. 2750, AFFTC 34.92 9.7973 32.1432 -0.10 
Baghdad 33.00 9.7957 32.1380 -0.11 
Florida Keys, Florida 24.58 9.7893 32.1170 -0.18 
Mexico City 20.00 9.7864 32.1075 -0.21 
Costa Rica 10.00 9.7819 32.0928 -0.25 
Equador (Equator) 0.00 9.7803 32.0877 -0.27 

Note: The local gravity at Edwards of 32.136 ft/sec2 has been measured and agrees with the model.  

The above local g values are computed for sea level. Edwards is at 2,300 feet geometric 
altitude and the gravity at that altitude is 32.136 ft/sec2. The gravity varies with altitude. Using 
latitude of 35 degrees, Table 15.2 illustrates this effect using the inverse square gravity law. The 
places in Table 15.1 were chosen to represent either even latitudes or interesting places. For 
instance, Point Barrow, Alaska, and Florida Keys, Florida, represent the extreme latitudes of the 
continental United States. Lake of the Woods, Minnesota, is the highest latitude in the lower 48 
states.   

The earth’s radius (20,925,643 feet) is also from the International Union of Geodesy and 
Geophysics and is a value for the equator.  This compares to 20,855,553 feet from the 1976 U.S. 
Standard Atmosphere.  
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Table 15.2 
EFFECT OF ALTITUDE ON GRAVITY 

Altitude 
(ft) 

g  
(ft/sec2) 

Percent from 
Surface 

Percent from 
Standard 

0 32.143 0.02 -0.10 
2,300 32.136 0.00 -0.12 
10,000 32.113 -0.07 -0.19 
20,000 32.082 -0.17 -0.29 
30,000 32.051 -0.26 -0.38 
40,000 32.021 -0.36 -0.48 
50,000 31.990 -0.45 -0.57 
60,000 31.960 -0.55 -0.67 
70,000 31.929 -0.64 -0.76 
80,000 31.899 -0.74 -0.86 
90,000 31.869 -0.83 -0.95 
100,000 31.838 -0.93 -1.04 

 
The last two variables are speed and heading which need to be considered together. Speed 

has an effect upon normal load factor due to Coriolis terms in the gravity equations that are 
functions of the true heading. Using 40,000 feet and latitude of 35 degrees,  
Table 15.3 illustrates the speed and heading effect.  

Table 15.3 
EFFECT OF HEADING AND SPEED ON NORMAL LOAD FACTOR 

Heading 
(deg) 

Mach  
Number 

Normal Load Factor 
(g) 

0 0.0 0.9952 
0 0.8 0.9943 
0 2.0 0.9896 

90 0.0 0.9952 
90 0.8 0.9914 
90 2.0 0.9824 

180 0.0 0.9952 
180 0.8 0.9943 
180 2.0 0.9896 
270 0.0 0.9952 
270 0.8 0.9972 
270 2.0 0.9968 

 

So, what is the significance of this?  The normal load factor experienced by an aircraft varies 
with latitude over the earth, how high and how fast the aircraft is flying and in what direction. 
For a given mass of aircraft, we needed to generate 0.23 percent more lift over St. Petersburg, 
Russia, than over Edwards AFB. We needed 0.36 percent less lift at 40,000 feet than at 2,300 feet 
over Edwards AFB. At 0.8 Mach number, 40,000 feet, 0.59 percent more lift is required heading 
west than heading east. Generally, for conventional aircraft performance, we have been ignoring 
these factors.  
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How did these variations in zN  translate to performance? As zN  increased, it was necessary 
to generate more lift and therefore, more drag due to lift was created. In cruise performance, a 1-
percent increase in drag is about a 1-percent increase in fuel flow required to sustain stabilized 
flight. Using a B-52G drag polar at 0.8 Mach number, corresponding to an optimum cruise at 
40,000 feet, Table 15.4 was generated.  

Table 15.4 
EFFECT OF HEADING ON DRAG COEFFICIENT 

 
Heading 

 
zN  

 
DC  

Percent from 
Reference 

Reference 1.0000 0.02641 0.00 
270 (west) 0.9972 0.02634 -0.26 
0 or 180 0.9943 0.02628 -0.49 
90 (east) 0.9914 0.02622 -0.72 

 
Very similar percentage differences were obtained using an F-15 drag polar. At Mach 

number 2.0 for the F-15 aircraft, the variations in drag are less than 0.1 percentage. This is due to 
the much smaller amounts of drag due to lift at the higher speeds. Although zN  varied more at 
M=2.0 than at M=0.8, the effect on performance was actually much less. 

The significant comparison is between west and east being nearly ½ of 1 percent apart. The 
bias between the reference and the other data tended to fall out in flight test data as the drag 
polars generated are biased to compensate for this effect and there is not a ½ percent error in  
range data. Nevertheless, the data collected heading west would have shown about ½ of 1 percent 
more drag and fuel flow than the data collected heading east, if the data were accurate enough to 
detect that small difference. 

What we are talking about is roughly up to a ½ of 1-percent factor we had been ignoring. 
This does not produced a bias in our data (unless all our cruise data is collected heading east) but 
is rather a source of the scatter. With an INS as a data source, we can account for the variation in 
gravity.   

15.2 Performance Degradation during Aerial Refueling  

A common misconception is that the drag of the receiver aircraft during aerial refueling is 
increased. The drag of the receiver aircraft is unchanged. The thrust required of the receiver is 
increased due to the receiver climbing in the tanker downwash. The tanker downwash creates a 
negative vertical wind that the receiver aircraft encounters. Relative to the wind axis, the receiver 
is climbing at a flight path angle exactly equal to the tanker downwash angle to maintain a 
constant altitude. To sustain this climb, the receiver aircraft requires additional thrust and a 
resultant increase in fuel flow.  

During tests of the KC-10 aircraft with 10 different types of receiver aircraft, the average 
increase in fuel flow for the receiver aircraft was 25 percent. The B-1B behind a KC-135 aircraft 
showed a 15-percent increase. The YC-141B increase in fuel flow behind a KC-135 was 20 
percent.  
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To estimate the increase in thrust required for a receiver aircraft, you only need to know the 
theoretical downwash angle behind the tanker and then apply a downwash factor. The downwash 
factor (K) is simply a multiplicative factor to account for the fact that the receiver aircraft is in a 
flow field that is a combination of the tanker flow field and the free stream. For both the KE-3A 
and the B1-B aircraft, this K factor is about 0.5. The theoretical downwash angle ( 0ε ) is exactly 
twice the ideal angle of attack.  

 
( )
( )0

2 Lt

t

C
AR

ε
π
⋅

=
⋅

 (15.2) 

where: 

LtC  = lift coefficient of the tanker aircraft, and 

tAR  = aspect ratio of the tanker aircraft. 

The actual downwash angle is found (with a K of 0.5) to be approximately equal to the ideal 
angle of attack of the tanker.  
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 (15.3) 

Then the increase in thrust of the receiver could be computed by the component of weight 
through the downwash angle. With respect to the wind axis, the receiver aircraft is climbing 
while behind a tanker in level flight. 

 sin( )n tF W ε∆ = ⋅  (15.4) 

15.3 Performance Degradation during Terrain Following  

Flight while performing terrain following results in an increase in average fuel flow when 
compared to flight at the same average Mach number and altitude level. While in the terrain 
following mode, the aircraft is constantly either pulling up or pushing over. In a pullup ( zN >1) 
the drag is increased over that for an zN =1 due to an increase in drag due to lift (or induced 
drag). In a pushover, ( zN <1) the drag is reduced due to a decrease in the drag due to lift. 
Because of the parabolic nature of the drag polar, the magnitude of the drag increase in the pullup 
is greater than the magnitude of the drag decrease in the pushover. The net effect is there is a net 
increase in average thrust required and a resultant increase in average fuel flow.  

For the case of an aircraft with automatic terrain following and afterburner, the average 
increase in fuel flow can be substantial. Every time afterburner is used, the fuel flow increases 
dramatically. The thrust specific fuel consumption ( )tsfc  will typically be less than 1.0 in  
non-afterburner and >2.0 in afterburner.  
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15.4 Uncertainty in Performance Measurements   

There is no precise answer to the question, “how accurately do we measure certain 
performance flight test parameters,” as each instrumentation system is different. Nevertheless, 
our experience has given us some approximate uncertainties that we feel are obtainable and had 
been achieved. Some typical parameter uncertainties are shown in Table 15.5. In some cases, 
these parameters are not direct instrumentation measurements, but rather the result of 
computations involving several measurements. 

Table 15.5 
PARAMETER UNCERTAINTIES 

Parameter Units Symbol Uncertainty 
Fuel Flow pounds/hr fW  ±1% 

Calibrated Airspeed kts CV  ±0.5 knots 
Gross Weight pounds tW  ±0.5% 

Longitudinal Load Factor g xN  ±0.001 g 
Normal Load Factor g zN  ±0.01 g 

Ambient Temperature °K T  ±0.5 °K 
Pressure Altitude ft CH  ±25 feet 

 
15.5 Sample Uncertainty Analysis 

For a transport category aircraft, a performance figure of merit might be the specific range at 
optimum speed and altitude. Let us choose a typical high altitude cruise condition: 

a. CV   = 280 knots  (calibrated airspeed), and 

b. CH   = 35,000 feet (pressure altitude). 

On a standard day the ambient temperature is: 

c. T = 218.81 °K. 

Calculating the Mach number: 

d. M = 0.8213. 

True airspeed is: 

e. tV  = 473.44 knots. 

If the computed ambient temperature is in error on the high side by 0.5 degree K then the true 
airspeed would be tV  = 473.98 knots for a 0.11-percent error. In addition, an altitude error of 25 
feet produces a 0.04-percent error, and a calibrated airspeed error of 0.5 knot produces a 0.26-
percent error. 
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At an / 10.0L D = , an error of 0.001 g in longitudinal load factor yields a 1.0-percent error in 
drag. We shall assume error in drag produces a 1.0-percent error in range factor.  Then, for range 
factor ( RF ), we have the following errors: 

a. tV    0.11 percent due to T  error, 

b. tV    0.04 percent due to CH  error, 

c. tV    0.26 percent due to CV  error, 

d. xN   1.00 percent, 

e. tW    0.50 percent, and 

f. fW    1.00 percent. 

The root mean square (rms) of the three tV  uncertainties computes to be 0.285 percent.  The 
RMS of the four uncertainties computes to be 1.53 percent.  Please note that carrying out the 
speeds to five significant figures did not imply that we could measure speeds to that level of 
accuracy. At the time of this handbook, with the advent of EGI even greater accuracies than those 
presented above may be achieved for airspeeds, altitudes, and flight path accelerations. 

15.6 Wind Direction Definition  

What may seem to be an improper definition of wind direction (from which the wind is 
blowing) may derive from ancient Greece. Improper in the sense that defining the wind direction 
as from which it is blowing is opposite from the vector direction of wind. In Britannica  Online, 
a structure called the Tower of the Winds is discussed briefly. In about 100 BC an octagonal 
(eight-sided) marble structure, 42 feet high and 26 feet in diameter, was constructed. The eight 
sides face points of the compass (N, N-E, E, etc). It would seem logical that a wind blowing on 
the structure would be considered a positive wind. The wind would always be positive, since it 
would be blowing on some side of the structure – never away from the structure, so to speak. 
Therefore, if the wind were blowing directly on the north side of the Tower of the Winds, this 
positive wind would have a direction of north  
(0 degrees). This direction is the direction from which the wind is blowing, the same as the 
compass heading of the Tower. One could think of this Tower as either an aircraft control tower 
or an aircraft. 



16.0 STANDARDIZATION 

16.1 Introduction  

For presentation and comparison purposes, performance data are usually corrected to 
standard conditions. The standard conditions are specified values of gross weight, pressure 
altitude, cg (center of gravity), and Mach number. Standard ambient temperature is usually based 
on the 1976 U.S. Standard Atmosphere. Standardization relies upon a predicted model of drag, 
thrust, and fuel flow. Usually, small corrections to standard day conditions are made, but these 
could be large when temperature is substantially off standard day. If there is a 10-percent error in 
the predicted model and we made 10-percent corrections to the data, we incurred only a 1- 
percent error in the standardized results. At the AFFTC in midsummer, the temperature at 30,000 
feet is, on average, 10 degrees C hotter than standard day, which produces, typically, about a 10-
percent decrease in thrust at MIL or MAX. The standardization is performed using an additive 
increment method. 

16.2 Increment Method 

The general principle of standardization is an additive increment method. The formulas used 
to standardize net thrust ( nF ), fuel flow ( fW ), and drag ( D ) are as follows:  

 ( )ns nt ns ntF F F F′ ′= + −  (16.1) 

where: 

nsF  = standardized net thrust (pounds), 

ntF  = test day net thrust (pounds),  

nsF ′  = standard day predicted net thrust (pounds), and 

ntF ′  = test day predicted net thrust (pounds). 

 ( )fs ft fs ftW W W W′ ′= + −  (16.2) 

where: 

fsW  = standardized fuel flow (pounds/hour), 

ftW  = test day fuel flow (pounds/hour),  

fsW ′  = standard day predicted fuel flow (pounds/hour), and 

ftW ′  = test day predicted fuel flow (pounds/hour). 

Fuel flow is first standardized to a minimum fuel lower heating value (LHV), usually 18,400 
Btu/pound.  

 
18, 400

test
ft ft

LHVW W  = ⋅ 
 

 (16.3) 
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Typical test values of LHV are in the vicinity of 18,550 Btu/pound, which amounts to a ½-
percent correction. The correction will generally increase fuel flow, since the spec is a minimum. 
That is, almost all actual fuel will have an LHV greater than the spec.  

 ( )s t s tD D D D′ ′= + −  (16.4) 

where: 

sD  = standardized drag (pounds), 

tD  = test day drag (pounds), 

sD ′  = predicted standard day drag (pounds), and 

tD ′  = predicted test day drag (pounds). 

 t nt extD F F= −  (16.5) 

 
tex x tF N W= ⋅  = test day measured excess thrust (16.6) 

Then, 

 ( ) ( )
s tex ex ns s nt tF F F D F D′ ′ ′ ′= + − − −  (16.7) 

The above equations illustrate the general principle. The test net thrust is determined, usually, 
from an in-flight thrust deck. The predicted thrust and fuel flows are determined from a 
prediction (or status) deck. These are described briefly in the thrust section. The predicted drags 
are obtained from a contractor-provided predicted drag model subroutine. The contractor drag 
model should include an accounting for skin friction drag. In lieu of that, formulas presented in 
the lift and drag section could be used.  

Each maneuver involves a different parameter being adjusted to standard conditions but the 
basic method is the same incremental difference method. The standardization parameters for 
various maneuvers are discussed in the following text. 

16.2.1 Climb/Descent   

Excess thrust and fuel flow are standardized: 

a. zN  is computed. 

16.2.2 Acceleration/Deceleration  

Excess thrust and fuel flow are standardized: 

a. zN   = 1.0. 
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16.2.3 Accelerating/Decelerating Turn 

Excess thrust and fuel flow are  standardized: 

a. zN  is specified. 

16.2.4 Cruise 

Fuel flow is standardized: 

a. zN  = 1.0 (usually) (Note: a rare exception to the 1.0-g would be for standardizing data in 
an endurance turn.), and 

b. Excess thrust = 0.0. 

16.2.5 Thrust-Limited Turn  

zN  and fuel flow are  standardized: 

a. Excess thrust = 0.0. 

16.3 Ratio Method 

An alternative to the increment method of standardization is a method based upon ratios. The 
formulas for standard day net thrust, fuel flow, and drag would be as follows: 

 ns
ns nt

nt

FF F
F

 ′
 = ⋅

′  
 (16.8) 
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 (16.9) 
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t

DD D
D

 ′
 = ⋅

′  
 (16.10) 

Then, standard day excess thrust (
sexF ) would be: 

 
sex ns sF F D= −  (16.11) 

For fixed throttle maneuvers (climb, turn, and accel), the above equation would suffice. For 
cruise, where standard excess thrust should be zero, an iteration is required.  

The question that needs to be answered is “what is the difference in the magnitude of 
difference between the ratio and difference methods?” Take the case of the standardized excess 
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thrust in acceleration. If there was zero error in both test day measured net thrust and in the thrust 
model, then there would be zero error in the standardization for both ratio and increment 
methods. From the above equations, let us write out the full 

sexF formula for both increment and 
ratio methods. 

 
s

ns s
ex nt t

nt t

F DF F D
F D

   ′ ′
   = ⋅ − ⋅

′ ′      
 ratio method (16.12) 

However, 

 
tt nt exD F F= −  for both methods (16.13) 

Then, the ratio method becomes: 

 
s t

s ns s
ex ex nt nt

t nt t

D F DF F F F
D F D

     ′ ′ ′
     = ⋅ + ⋅ − ⋅

′ ′ ′          
 ratio method (16.14) 

 ( ) ( )
s tex ex ns nt s tF F F F D D′ ′ ′ ′= + − − −  increment method (16.15) 

Then, whichever method introduces the most error into the standardized excess thrust is a 
function of the errors in the prediction models. If the prediction models are in error by 
approximately a constant percentage, then the ratio method will introduce the least error. This is 
because the errors would cancel out when doing the division. Conversely, if the models are in 
error by approximately a constant magnitude, then the increment method will introduce the least 
error. This is due to the errors canceling out when doing the subtraction.   

Either way, one is invariably introducing some errors (hopefully small) into your data by the 
very process of standardization. Standardization is performed as a means of convenient data 
presentation. One should recognize that a data point on a plot presented as standard conditions is 
a data point that was not flown.  It represents an extrapolation of an actual test point. The 
following are two sources of error in standardization. 

a. For cruise at high altitude, the standard day conditions may be unachievable. That is due 
to having sufficient thrust on a test day, but not on a standard day. The test day temperature may 
have been substantially colder than standard day giving the engine much more thrust than would 
be available on the warmer standard day. Your cruise standardization algorithm should check to 
assure that standard day drag is less than the maximum available thrust.  

b. The engine may be in some manner limited (turbine temperature or rpm limit) on the test 
day. If this limiter is not accurately modeled in the status deck, then the correction to standard 
day will have errors. For instance, the engine may not be on this limit on the standard day, 
yielding additional thrust. Conversely, it may not be on the limit on the test day, but would be on 
the standard day.  
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17.0 A SAMPLE PERFORMANCE MODEL 

17.1 Introduction 

In this section, we will construct a performance model. The model will be highly idealized. 
The purpose of this section is to illustrate some general concepts. One should not assume that 
their drag, thrust, or fuel flow models would be the same as, or as simple as, those presented here.  

17.2 Drag Model  

17.2.1 Minimum Drag Coefficient  

In order to illustrate the shape of performance parameters, such as specific excess power as a 
function of Mach number or altitude, we will construct a drag model. That drag model is fiction, 
but approximates that of an F-16 aircraft. Drag has three components. These are skin friction, 
profile drag, and drag due to lift. We could think of drag as having only two components: 
minimum drag and drag due to lift. Minimum drag is then the sum of profile drag and skin 
friction drag. Drag due to lift is also called induced drag. Profile drag is sometimes called form 
drag. For the purposes of our model, we will make up numbers for standard day at 30,000 feet 
pressure altitude. Then, our predicted skin friction drag formulas will be used to compute 
minimum drag at conditions other than standard day at 30,000 feet.  

Our basic formula for drag coefficient is the AFFTC drag model formulation from the 
previous section. We will start by assuming that minDC  = 0.0200 (200 drag counts) for Mach 
number < 0.80. That is a typical minimum drag coefficient for a wide range of aircraft.  From the 
subsonic condition to Mach number = 1.0, the drag coefficient approximately doubles. Some data 
points were assumed and a curve fit was applied. Figure 17.1 is delta drag coefficient for the 
subsonic condition. The equation for minimum drag coefficient at any given Mach number is as 
follows: 

 min 0.0200D DC C= + ∆  (17.1) 
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delta Cd versus Mach Number - Subsonic

y = 2.9003x 3 - 7.1998x 2 + 5.9828x - 1.6633
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Figure 17.1  Subsonic Drag Increment 

The drag coefficient in the transonic regime will peak out somewhere just past Mach number 
= 1.0 and then will sometimes decrease slightly with increasing Mach number. Each aircraft will 
have different characteristics, of course. Data values for minimum drag were assumed at various 
Mach numbers and curve fits were applied. Figures 17.2 and 17.3 are for transonic and 
supersonic speeds. 

Delta Cdmin - Transonic
y = -25.5066x4 + 113.4193x3 - 188.9433x2 + 139.7543x - 38.7038
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Figure 17.2  Transonic Drag Increment 
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delta Cd - Supersonic
y = -0.011534x3 + 0.061267x2 - 0.109113x + 0.083435
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Figure 17.3  Supersonic Drag Increment 

Notice that there were overlapping data points in each of the plots. For instance, 0.95 and 1.0 
Mach number appeared in both the subsonic and transonic plots.  

Summarizing the following curve fit formulas (where X = Mach number and Y = delta DC ):  

a. Subsonic 

1. Y = 2.9003⋅X3 - 7.1998⋅X2 + 5.9828⋅X -1.6633 

b. Transonic 

2. Y = -25.5066⋅X4 + 113.4193⋅X3 -188.9433⋅X2 + 139.7543⋅X -38.7038 

c. Supersonic 

3. Y = -0.01153⋅X3 + 0.06127⋅X2 -0.10911⋅X +0.08343 

Table 17.1 contains the data points, the corresponding curve fits values, and the errors in the 
curve fits.  
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Table 17.1 
TABULATED DRAG RISE DATA 

Mach Number DC∆  Data DC∆  Fit Error = Data – Fit 
0.7993  0.00000  
0.8000 0.0000 0.00002 -0.00002 
0.8750 0.0020 0.0023 -0.00028 
0.9000 0.0040 0.0037 0.00030 
0.9500 0.0090 0.0092 -0.00019 
0.9995  0.01984  
1.0000 0.0200 0.0199 0.00010 
1.0500 0.0215 0.0218 -0.00031 
1.0750 0.0216 0.0216 -0.00004 
1.1000 0.0216 0.0214 0.00019 
1.1467 0.0214 0.02148  
1.1500 0.0213 0.02144 -0.00021 
1.2000 0.0210 0.0208 0.00021 
1.4000 0.0190 0.0191 -0.00011 
1.6000 0.0185 0.0184 0.00005 
2.0000 0.0180 0.0180 0.00000 

Notes: 1.  Bold numbers are at Mach numbers where the curve fits equate. 
2.  The error numbers are carried to one extra digit. 

The model for minimum drag is then the three equations (1, 2, and 3 on page 186) with 
transition points at the following Mach numbers: 

a. 0 for 0.7993DC M∆ = < , 

b. subsonic for 0.7993 0.9995DC M∆ = < < , 

c. transonic for 0.9995 1.1467DC M∆ = ≤ ≤ , 

d. supersonic for 1.1467 2.000DC M∆ = < ≤ , and 

e. 0.0180 for 2.0DC M∆ = > . 

The Mach number ranges for the above are not meant to imply any general definition of the terms 
subsonic, transonic, or supersonic. They are simply where the curve fits for this particular arbitrary data 
set intersected.  

The first and last conditions are constraints applied to the model. The low-end constraint 
( 0.7993M < ) is to keep the minimum drag at 0.0200 for all Mach numbers less than 0.7993. 
The high-end constraint ( 2.0M > ) is to keep the polynomial from giving very unreasonable 
results in event the model is used beyond the last Mach number. If this were actual flight test 
data, we could not be certain what the behavior of the minimum drag might be beyond where 
actual test data were acquired. However, wind tunnel data could perhaps be utilized to 
extrapolate beyond where flight test data were obtained. Figure 17.4 puts all three pieces of the 
minimum drag model together on a single plot.  
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delta Cd versus Mach Number
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Figure 17.4  Summary of Delta Drag Coefficient 

17.3 Skin Friction Drag Coefficient  

Skin friction drag coefficient varies with Reynolds number and Mach number. We will use the 
empirical skin friction flat plate turbulent boundary layer equations presented in the lift and drag section, 
and presume a characteristic length of 10 feet. Figure 17.5 is for standard day conditions.  

Skin Friction Drag Coefficient versus Mach Number
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Figure 17.5  Skin Friction Drag Coefficient 
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At 30,000 feet and 0.8 Mach number, on a standard day, the slope of the fC  curve is 
0.000014 per 1,000 feet. This is positive with increasing altitude; that is, the higher altitude has 
the higher skin friction drag. Again, at the same condition, the slope of the fC  curve versus 
temperature is 0.0000018 per 1 degree K. The temperature slope is positive with increasing 
temperature; that is, the fC  is higher on a day that is hotter than standard. Those fC∆  might 
appear small until one considers that the typical ratio of wetted area to wing area is about 4 and 
the altitude range of a fighter aircraft is 50,000 feet. Therefore, at 0.8 Mach number, for instance, 
the total variation in drag coefficient due to skin friction (at the same lift coefficient) can be 
calculated as follows: 

 4 0.000014 50 0.0028fwet
D

CSC h
S h

∆
∆ = ⋅ ⋅∆ = ⋅ ⋅ =

∆
 (28 drag counts) (17.2) 

That is a 28-drag count number over the range of sea level to 50,000 feet. Compare that to the 
typical number of 200 for the minimum drag coefficient. Quite significant! 

For our fictional aircraft (modeled after an F-16 aircraft), we will presume the following 
dimensional data: 

a. S  = 300 ft2 - wing area, 

b. l  = 10 feet - MAC (characteristic length), 

c. b  = 35 feet - wingspan, 

d. 2 /AR b S=  = 4.083, 

e. wetS  = 4.0 S⋅  = 1,200 ft2, 

f. ZfW  = 18,000 pounds - zero fuel weight, and 

g. Fuel = 6,000 pounds - fuel capacity. 

These numbers will be used to illustrate performance parameters in other sections of this 
handbook.  

17.4 Drag Due to Lift  

A drag due to lift (induced drag) model will be derived based upon the formulas presented in 
the lift and drag section of this handbook. This model (as with the minimum drag and skin 
friction drag) is developed only as a rough approximation of an actual airplane. Figure 17.6 
presents idealized drag due to lift slope data points and a second-order polynomial curve fit of 
those points. With actual flight test data, one will be able to develop a much more detailed and 
accurate model. As you can see, we have mostly ignored the variation in the transonic Mach 
number range. 
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Theoretical Drag Due to Lift Slope

y = 0.0182x2 + 0.0294x + 0.0990
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Figure 17.6  Drag Due to Lift Slope 

The above drag due to lift model is for the linear (or pure parabola) portion of the drag polar. 
The curve is a parabolic fit of the data and ignores the variations in the transonic speed range. In 
general, there will be a deviation from the linear model as flow separation develops. We will call 
this the nonlinear portion of the model. As shown in the lift and drag section, a general formula 
for drag coefficient that seems to match most flight test data quite well for a given Mach number, 
pressure altitude, and longitudinal center of gravity position condition is as follows: 

 ( ) ( )2 2
min min1 2D D L L L LbC C K C C K C C= + ⋅ − + ⋅ −  (17.3) 

where: 

2 0 L LbK if C C= < . 

The y parameter in the theoretical drag due to lift plot is equal to 1K . In most textbooks, 
the minLC  is ignored. The minLC (lift coefficient at minimum drag coefficient) is usually some 
small positive value due to positive camber on most wings and positive wing incidence. In our 
model, we will assume the following for a minLC .   

 min 0.100 0.05LC M= − ⋅  (17.4) 

Hence, for this model the minLC  is 0.10 at M  = 0.0, 0.05 at M  = 1.00, and 0.00 at M  = 
2.00. We need to emphasize that this model is pure fiction, but the trends do roughly approximate 
that of a real aircraft such as the F-16. 
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For the break lift coefficient LbC , we will assume a constant value of 0.60. To get a rough 
number for 2K , consider that the drag coefficient will double over that predicted by the linear 
model by the time a LC  of 1.50 is attained. Both 2K  and LbC  will, in general, be functions of 
Mach number, but for simplicity, we will give them constant values. From our models at M  = 
0.0 and LC <0.60. 

 20.0200 0.099 ( 0.10)D LC C= + ⋅ −  (17.5) 

At LC  = 1.50; DC  = 0.2140. 

Solving for 2K  from equation 17.5:  

a. 
( )

( )

2
min min

2

1 (
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D D L L

L Lb

C C K C C
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C C
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b. [ ]
( )2
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⋅ −
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−
. 

Figure 17.7 is for this model at M  = 0.80. 

Drag Coefficient versus Lift Coefficient (Mach Number = 0.80)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Lift coefficient - Cl

D
ra

g 
co

ef
fic

ie
nt

 - 
C

d

Linear Model
Non-Linear Model

 
Figure 17.7  Drag Model at 0.8 Mach Number 

Figure 17.7 illustrates how dramatically the drag polar can deviate from the pure parabola. 
The vast majority of 1-g flight occurs at lift coefficients below the point where significant flow 
separation begins. To illustrate the general shape of the polar for L LbC C< , we will plot drag 
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coefficient versus lift coefficient as a function of Mach number.  Figure 17.8 represents only the 
subsonic Mach numbers, and Figure 17.9 includes all Mach numbers. Note to those who are 
accustomed to seeing drag coefficient on the x-axis: the plot axes are opposite of the usual 
convention. 
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Figure 17.8  Subsonic Drag Model 
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Figure 17.9  Drag Model – All Mach Numbers 
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We now have all of the required components for a sample drag model. This will be used in 
combination with a thrust-fuel flow model to compute performance parameters. We will use this 
to compute performance during cruise, climb, and turn.  

17.5 Thrust and Fuel Flow Model 

As with the drag model, we will construct a set of equations to represent net thrust and fuel 
flow. There will be two separate models. One will be for non-afterburner engine operation and 
the other will be for maximum afterburner. We will begin with a fuel flow model for  
non-afterburner. 

17.6 Thrust Specific Fuel Consumption  

Thrust specific fuel consumption ( tsfc ) is simply the ratio of fuel flow to net thrust.  

 f

n

W
tsfc

F
=  (17.6) 

The parameter will sometimes generalize by dividing by the square root of the total 
temperature ratio.  

 
2t

tsfctsfcr
θ

=  (17.7) 

 2
2 288.15

t
t

Tθ =  (17.8) 

 2
2 (1 0.2 )tT T M= ⋅ + ⋅  (17.9) 

Ideally, the total temperature would be measured in the engine inlet. However, that parameter is 
difficult to measure and even more difficult to model so one usually (but not always) will use a ram 
air temperature measurement. Ram air temperature is total temperature. 

Figure 17.10 is a sample representation of thrust specific fuel consumption referred ( tsfcr ) 
versus referred net thrust ( 2/n tF δ ). The parameter referred net thrust is net thrust divided by total 
pressure ratio at the inlet. In this case, we will use a Pitot-static derived total pressure ratio. That 
means we have assumed zero inlet losses. 

 
2

n
nr

t

FF
δ

=  (17.10) 

For M < 1.0: 

 2 3.5
2 (1 0.2 )t Mδ δ= ⋅ + ⋅  (17.11) 
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For M  ≥ 1: 

 ( )2.57 2
2 166.9216 7 1t M Mδ δ  = ⋅ ⋅ ⋅ −  

 (17.12) 
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Figure 17.10  Thrust Specific Fuel Consumption 

To better illustrate real effects, an additional term will be added to our tsfcr  model.  There is, 
generally, degradation in the parameter with increasing altitude (or decreasing Reynolds 
number). We will assume the above curve is valid up to a Reynolds number corresponding to a 
standard day at 30,000 feet. The parameter Reynolds number index ( RNI ) is introduced in the 
lift and drag section. This is the ratio of Reynolds at the test condition to the Reynolds number at 
sea level, standard day, for the same test day Mach number. For standard day, we have the 
following values for RNI : 

a. 30,000 feet RNI  = 0.4010, and 

b. 50,000 feet RNI  = 0.1661. 

A typical degradation in tsfcr  is on the order of ¼ percent per 1,000 feet of altitude. 
Therefore, for 20,000 feet we would have a 5-percent degradation. Hence, a formula for a 
multiplicative factor on tsfcr  would be as follows: 

 (0.4010 )1 0.05
(0.4010 0.1661)tsfcr

RNIF −= + ⋅
−

 (17.13) 
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or: 

 1 (0.4010 ) 0.2129tsfcrF RNI= + − ⋅  (17.14) 
 1.0 0.4010tsfcrF if RNI= >  

The above multiplicative factor is a number greater than one for Reynolds number indices 
less than 0.4010. With that term, we have a simplified model for fuel flow for non-afterburning. 
We must emphasize again, that the models presented here are very simplified and are presented 
to illustrate general trends only.   

17.7 Military Thrust  

For maximum thrust without afterburner, usually designated MIL power, we will construct a 
generalized form. First, we have already introduced the parameter called referred net thrust. For 
our model, we will assume a relationship of referred net thrust versus inlet total temperature 
( 2tT ).  

 2t r tT Tη= ⋅  (17.15) 

where: 

rη  = inlet temperature recovery factor. 

For this model, we will presume that rη  = 1.0. Usually, the recovery factor is difficult to 
measure and even more difficult to model anyhow. Therefore, typically, the rη  = 1.0 assumption 
is made with actual data analysis. A turbine engine is often said to be flat rated. That means that 
the thrust is constant to some value of inlet total temperature. We will presume that value to be 
standard day sea level temperature (288.15 degrees K). After that point, the thrust will decrease 
at some lapse rate. We shall presume the lapse rate to be  
1 percent per 1.0 degree K.  We will take a value of 9,000 pounds as the flat rated value of 
referred net thrust. Then, the equation for our model is as follows: 

 29,000 if 288.15nr tF T= ≤  (17.16) 

 ( )2 29,000 1 0.01 288.15 if 288.15nr t tF T T = ⋅ − ⋅ − >   (17.17) 

Figure 17.11 is a graphical representation of the above equations. It should be noted that this 
model is highly idealized. An actual model will have altitude and Mach number effects.  

For standard day, the model presented in Figure 17.12 is for thrust versus Mach number as a 
function of altitude.  
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Referred Net Thrust versus Total Temperature:  MIL Thrust
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Figure 17.11  Military Referred Net Thrust 

Net Thrust versus Mach Number (Nonafterburning) Standard Day

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mach Number

N
et

 T
hr

us
t (

lb
s)

Sea Level
10,000 ft
20,000 ft
30,000 ft
35,000 ft
40,000 ft
42,500 ft

 
Figure 17.12  Military Thrust 
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17.8 Maximum Thrust  

For maximum (MAX) thrust, we will construct a similar model. First, the formulas for the 
pressure ratio are presented for an assumption of a normal shock inlet. A normal shock inlet is one 
where the recovery is across a normal shock. This is just what you have in a Pitot probe.  

For the maximum thrust with afterburner model, we were going to use the same lapse rate 
(1.0 percent per 1.0 degree K) but ran into the effect of thrust going to zero within the range of 
achievable total temperatures. So, a lapse rate of ½ percent is used instead. We took a flat rated 
value for referred thrust of an even 20,000 pounds. By comparison, the static sea level uninstalled 
thrust ratings in the F-16 engines are (as of this writing) on the order of in excess of 25,000 
pounds. The equations for referred thrust are as follows: 

 220,000 if 288.15nr tF T= ≤  (17.18) 

 ( )2 220,000 1 0.005 288.15 if 288.15nr t tF T T = ⋅ − ⋅ − >   (17.19) 

A graphical representation of the model is shown in Figure 17.13. This model is also highly 
idealized, ignoring Mach number and altitude effects. 
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Figure 17.13  Referred Net Thrust for Maximum Thrust 

The maximum thrust model is presented as net thrust versus Mach number as a function of 
altitude for standard day in Figure 17.14. 
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Net Thrust (with Afterburning) versus Mach Number (Standard Day)
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Figure 17.14  Maximum Thrust 

For fuel flow during maximum thrust operation, we will assume a very simple model. 
Experience has shown that thrust specific fuel consumption during maximum afterburner 
operation is at least 2.0. Let us, arbitrarily, assume a value of 2.5: 

a. 2.50tsfcr = . 

17.9 Cruise 

Using the previously developed drag and fuel flow models, we can compute cruise 
parameters. The parameter range factor was developed in the cruise section and is repeated here. 

 t
t

f

VRF W
W

= ⋅  (nam) (17.20) 

An equivalent form of the equation is as follows: 

 
661.48 t

f

WM
RF

W
δ

δ θ

  ⋅ ⋅    =
  
  ⋅  

 (17.21) 

The term in the denominator is called corrected fuel flow and can be expressed in another 
form. 
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 f nW Ftsfc
δδ θ θ

     = ⋅   ⋅    
 (17.22) 

In order to differentiate between dividing by total or ambient conditions, we will use the 
convention of ‘corrected’ for ambient conditions and ‘referred’ for total conditions. Hence, 

 corrected tsfctsfctsfcc
θ

 =  
 

 (17.23) 

 
2

referred tsfc
t

tsfctsfcr
θ

 
=  
 

 (17.24) 

This may not be a universal convention, but will be used in this text.  

Combining the range factor in equation 17.21 and corrected fuel flow in equation 17.22 
yields: 

 
661.48 t

n

WM
RF

Ftsfcc

δ

δ

  ⋅ ⋅   =  
  ⋅    

 (17.25) 

The concept behind the old constant weight-over-delta ( /tW δ ) method of testing was that if 
one kept M  and /tW δ  constant, then drag would be constant. That derived from the simplified 
forms of lift and drag coefficient for 1-g flight and thrust equals drag. 

 
2

0.000675 t

L

W

C
M S

δ
 ⋅ 
 =
⋅

 (17.26) 

 
( )

2

0.000675
D

D
C

M S
δ⋅

=
⋅

 (17.27) 

 ( )nF D
δ δ

  = 
 

 (17.28) 

However, we know that both drag and engine thrust specifics vary with Reynolds number. 

17.10 Range  

For our model aircraft on a standard day, at 22,500 pounds gross weight, we can compute the 
parameter range factor. Figure 17.15 is  a plot of range factor for a series of altitudes. Either the 
minimum Mach number is dictated by the left scale of the plot, attaining a maximum lift 
coefficient or thrust required exceeding the thrust available. The thrust available is deemed to be 
that determined from our military thrust model. The maximum lift coefficient is simply: 
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a. max 1.50LC = . 

We will use the same 1.50 value for maximum lift coefficient for all the problems in this 
section.   

Range Factor versus Mach Number (Weight=22,500 lbs)
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Figure 17.15  Range Factor 

By picking off the peaks of the curves we can plot (Figure 17.16) peak range factor versus 
weight-over-delta. The topic of optimum flight profiles is a topic that will not be covered in this 
section, but suffice it to say that in a sense the closest distance between two points is not 
necessarily a straight line.  
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Constant Altitude Cruise: Weight=22,500 lbs: Range Factor versus Weight-Over-Delta
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Figure 17.16  Maximum Range Factor 

Figure 17.17 illustrates the effect of Reynolds number on cruise performance and demonstrates that 
you do not get the same range factor at a given /tW δ  and Mach number regardless of altitude (or 
temperature). This is due to skin friction effects on both aircraft drag and on the engine. The engine 
blades are experiencing the same skin friction drag effects as the aircraft wing and other surfaces. The 
weight-pressure ratio ( /tW δ ) is 125,000 pounds for all the data in the next two plots. 
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Figure 17.17  Range Factor – Altitude Effect 
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At 0.85 Mach number, Table 17.2 summarizes the numbers off the above plot. 

Table 17.2 
RANGE FACTOR VARIATION WITH ALTITUDE 

Altitude  
(ft) 

Weight  
(pounds) 

 
RNI 

Range Factor 
(nm) 

43,030 20,000 0.2322 5736.7 
40,580 22,500 0.2612 5794.3 
38,388 25,000 0.2903 5849.7 

 

The percentage change per 1,000-foot change in altitude calculates to 0.39 percent. This 
number is comparable to the actual flight test derived values shown in the cruise section for three 
different aircraft.  

Taking the mid-weight as the baseline, we can also vary temperature and keep altitude and 
weight constant. This will achieve a variation in Reynolds number, as shown in Figure 17.18. 
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Figure 17.18  Range Factor – Variation with Temperature 

At the same 0.85 Mach number and weight-pressure ratio, the effect of temperature is shown 
in Table 17.3.  
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Table 17.3 
RANGE FACTOR VARIATION WITH TEMPERATURE 

Temperature Above Standard 
(deg K) 

-20 
(196.65) 

Std 
(216.65) 

+20 
(236.65) 

Reynolds Number Index 0.2977 0.2612 0.2312 
Range Factor (nm) 5,836.6 5,794.3 5,736.8 

 
By comparing the numbers Tables 17.2 and 17.3, it can be seen that the slope of range factor 

versus Reynolds number index is essentially identical between varying altitude and weight at 
constant weight-pressure ratio and varying ambient temperature. Both will achieve a variation in 
Reynolds number index. 

17.11 Endurance 

For the case where it is desired to maximize endurance, we would need to find the Mach 
number for minimum fuel flow. Figure 17.19 is a plot of fuel flow versus Mach number for the 
same weight and altitudes considered for range. 
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Figure 17.19  Fuel Flow - Endurance 

17.12 Acceleration Performance 

Acceleration performance will be computed using our model. The parameter-specific excess 
power ( sP ) was defined in the axis systems and equations of motion section. To compute sP  
from our model the following computations are performed. The drag and thrust models are 
defined in previous parts of this section. 
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 ( , , )D LC f C M RNI=  

 
( )2

0.000675
DM S C

D
δ ⋅ ⋅ ⋅

=  (17.29) 

 2
2 (1 0.2 )tT T M= ⋅ + ⋅  (17.30) 

 2( )nr tF f T=  

 2n nr tF F δ= ⋅  (17.31) 

 288.15
Tθ =  (17.32) 

 1116.45tV M θ= ⋅ ⋅  (ft/sec) (17.33) 

 ex nF F D= −  (17.34) 

 ex
x

t

FN W=  (17.35) 

 s x tP N V= ⋅  (17.36) 

17.13 Military Thrust Acceleration  

For military thrust (maximum without afterburner), our model and the above calculations 
produce Figure 17.20 for standard day. 

The above altitudes and weights were chosen to be the same as for the cruise. At 42,500 feet, 
the model computes a just barely positive sP , where sP  could be considered the rate of climb 
achievable for constant true airspeed.  

To illustrate the effect of temperature on acceleration performance, an altitude of 10,000 feet 
was chosen for Figure 17.21. 
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MIL Thrust Specific Excess Power (Wt=22,500 lbs)
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Figure 17.20  Military Thrust Specific Excess Power  

Ps versus Mach Number (Weight=22,500 lbs)
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Figure 17.21  Military Thrust – Specific Excess Power, Temperature Effect 
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The above difference in acceleration (and hence, climb) performance as a function of 
temperature is due primarily to thrust. There is, however, a small increase in drag at the higher 
temperatures due to skin friction. To repeat the thrust model presented in equations 17.16 and 
17.17: 

a. 29,000 for 288.15nr tF T= < , and 

b. [ ]( )2 29,000 1 0.01 288.15 for 288.15nr t tF T T= ⋅ − ⋅ − ≥ . 

This produces net thrust versus Mach number for 10,000 feet pressure altitude as shown in 
Figure 17.22. Drag is also plotted for standard day. 

There is a small drag difference due to skin friction as illustrated in Figure 17.23. 

At the point of minimum drag, we have the following points from the model. Mach number is 
0.42 in Table 17.4.  
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Figure 17.22  Military Thrust – Thrust and Drag at 10,000 Feet 
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Drag versus Mach Number (Weight = 22,500 lbs; Altitude=10,000 ft)
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Figure 17.23  Drag at 10,000 Feet – Temperature Variation 

Table 17.4 
DRAG VARIATION WITH TEMPERATURE 

Temperature  
(deg K) 

-20 
(248.3) 

Std 
(268.3) 

+20 
(288.3) 

Drag (pounds) 1,825.0 1,833.5 1,841.5 
 

Now, this 16.5-pound difference in drag, between ±20 degrees K of standard day at 10,000 
feet, is quite small for purposes of acceleration performance. However, if the aircraft were doing 
endurance tests, those 16.5 pounds would be almost a full 1 percent.  

17.14 Maximum Thrust Acceleration 

The analysis of data for maximum thrust is identical to that for military thrust. It’s just that 
the numbers are larger. In addition, we get to travel through the transonic region where some 
interesting drag effects may occur. First, we present the standard day sP  plot in  
Figure 17.24.  

The thrust model presented earlier had a referred net thrust of 20,000 pounds for total 
temperature below 288.15 (standard day sea level). The sea level rating for F-16 engines are 
somewhat larger than that number. Be aware, however, that a rating is uninstalled. By installing 
an engine in the aircraft, you will incur substantial inlet and other losses.   

 



 208

Ps versus Mach Number (Weight=22,500 lbs)
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Figure 17.24  Maximum Thrust  Specific Excess Power 

As we did with military thrust, we shall examine the effect of temperature on acceleration 
performance. This time we will choose 30,000 feet to conduct a comparison. Note that the temperature 
deltas this time are only 10 degrees K, versus 20 degrees K for the military thrust case. In addition, the 
thrust model chosen had only a ½ percent per degree K slope.  This sP  comparison is shown in Figure 
17.25. 
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Figure 17.25  Maximum Thrust Specific Excess Power Temperature Effect at 30,000 Feet 
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We chose to plot only between 0.9 and 1.60 Mach number for a specific reason. The 
prototype F-16 (YF-16) was involved in a flying competition with an aircraft designated the YF-
17 (later evolved into the Navy F-18) in 1974. One of the performance specification points was 
the time to accelerate from 0.9 to 1.6 Mach number at 30,000 feet. There were other rules: the 
time would be computed for a standard day and with the weight held constant at a mid-combat 
weight. To compute time is a simple numerical integration. 

 
( )

0

n t s
x

tt t

F D V h PN VW g V
−

= = + =
&&

 (17.37) 

We also had zero wind, because the above equation is only valid for zero wind. In addition, 
since we are accelerating at constant altitude, the h&  term is zero.  

 0 32.174t x xV g N N= ⋅ = ⋅&  (17.38) 

 32.174t
x

V Nt
∆  = ⋅ ∆ 

 (17.39) 
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x

Vt
N

∆∆ =
⋅

 (17.40) 

At 30,000 feet, standard day ambient temperature is –44.44 degrees C (easy number to 
remember) = 228.71 degrees K.  A little historical footnote here to illustrate the criticality of 
getting data at as cold a test day ambient air temperature as possible at 30,000 feet. The  
YF-17 performance tests were conducted in late summer and early autumn. A specification 
compliance condition was the time to accelerate from 0.90 to 1.60 Mach number at 30,000 feet 
on a standard day. In Appendix A note that the average temperatures at 30,000 feet above 
Edwards AFB are all greater than standard day. We were never able to accelerate the YF-17 
aircraft to 1.60 Mach number on a test day. The competition (YF-16) had no problem getting to 
1.60 Mach number even on days hotter than standard.  

 228.711116.45 994.65288.15tV M M= ⋅ ⋅ = ⋅  (17.41) 

 994.65 30.915
32.174 x x

M Mt
N N

⋅∆ ∆∆ = = ⋅
⋅

 (17.42) 

Finally,  

 
1.60

0.9

130.915
M

M x

t M
N

=

=

 
= ⋅ ⋅∆ 

 
∑  (17.43) 

The results of the time integration as a function of ambient temperature are shown in Figure 
17.26. Also shown is a second thrust model, which is a 25,000-pound model with the same ½-
percent lapse rate beginning at 288.15 degrees K. 
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Figure 17.26  Acceleration Time – Variation with Thrust 

17.15 Sustained Turn 

A sustained (or stabilized) turn is a constant altitude, constant speed turn. In order to achieve 
that condition, thrust must equal drag.  

 cos( )n g t eF F i F Dα= ⋅ + − =  (17.44) 

For this example, we will ignore the angle-of-attack component and simplify to: 

 nF D=  (17.45) 

We will make a similar simplification in the normal axis (perpendicular to the velocity 
vector). 

 z tL N W= ⋅  (17.46) 

Knowing thrust, compute drag, then drag coefficient. From drag coefficient, find lift 
coefficient, then lift, then solve for zN . Since we do not usually have lift coefficient as a 
function of drag coefficient, an iteration scheme is required. Here are the basics of what was used 
in this example. 

We know drag coefficient from the following: 
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2

0.000675 n
D

FC
M Sδ

⋅=
⋅ ⋅

 (17.47) 

Begin at 1-g, but use some positive drag polar slope for the first iteration, such as 0.10.  This 
is necessary since the slope of the drag polar at 1-g may be zero or even negative.  

 
( )

2 2 20.1
( )

Dnew DoldD

L L Loldnew

C CC
C C C

−∆ = =
∆ −

 (17.48) 

For the first iteration, the old values of LC  and DC  are the 1-g values. We always know the 
new DC . It is the one above, computed from the available net thrust. Solve for LnewC  from the 
above equation. After the first iteration, compute values for the slope numerically by choosing 
some small change in lift coefficient and computing the slope. For instance, we used 0.01.  

 2 22

( ( 0.01)) ( ( ))
( 0.01)

D L D LD

L L L

C f C C f CC
C C C

+ −∆ =
∆ + −

 (17.49) 

Then, just simply repeat the process a few times until the change in LC  is sufficiently small 
(say < 0.001) between steps. Now that you know lift coefficient, then just compute zN . The 
results for maximum thrust are shown in Figure 17.27. 

Nz versus Mach Number (Wt= 22,500 lbs)
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Figure 17.27  Maximum Thrust – Sustained Turn Normal Load Factor 
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The constraints imposed on this turn problem were the following. 

a. maxL LC C< , 

b. max 1.50LC = , 

c. maxz zN N< , and 

d. max 9.0zN = . 
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18.0 CRUISE FUEL FLOW MODELING 

This section had contained a regression analysis model of fuel flow and thrust extracted from 
the AFFTC C-17A (Figure 18.1) testing report titled, “C-17 Cruise Configuration Performance 
Evaluation” (Reference 18.1), but since this handbook is intended for public viewing, it was 
necessary to delete the scales on the data plots shown in this section.  

 
Figure 18.1  C-17A Aircraft 

 

( )
661.48

t

f

W
RF M

W
δ

δ θ

= ⋅ ⋅
 
 
 
 

 (18.1) 

Solving for corrected fuel flow. 

 ( ) 661.48
t

f
fC

W
WW M

RF
δ

δ θ

 
 = = ⋅ ⋅
 
 

 (18.2) 

The lift coefficient was computed using the curve fits for angle of attack (α ) and gross thrust 
( gF ) provided in the report (Reference 18.1). Pressure ratio (δ ) formulas used are found in the 
altitude section.   

 0.000675 sin( )gt
L

FWC α
δ δ

 
= ⋅ − ⋅ 

 
 (18.3) 

Since the data presented in the report (Reference 18.1) were corrected to a reference 
Reynolds number, an estimate of drag at test and reference conditions was computed. Instead of 
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the usual ‘standardization’ we are essentially ‘un-standardizing’ the drag data. We are going from 
a reference condition to a standard condition. The formulas used are those presented in the lift 
and drag section.  

The reference wing area ( S ) and the wetted area ( wetS ) are as follows: 

a. S =3,800. ft2, and 

b. wetS =19,075. ft2. 

Skin friction drag relationships are as follows: 

 2.58
100.455 / log ( )fC RN=  (18.4) 

 2 0.65/(1 0.144 )fC fC C M= + ⋅  (18.5) 

 wet
D fCf

SC C
S

= ⋅  (18.6) 

The assumption was made that the characteristic length used was the mean aerodynamic 
chord ( MAC ). That value is as follows: 

l MAC= =  25.794 feet. 

To perform a curve fit of the fuel flow data, we will remove the skin friction drag correction 
from the thrust data. The standard day drag coefficient ( DsC ) was computed from the drag polar 
curve fit formulas in the report. The drag coefficient formula in the report was referenced to a 
Reynolds number of 1,800,000 per foot. The test day drag coefficient ( DtC ) was computed as 
follows:  

 ( )
tD Ds Dft DfsC C C C= + −  (18.7) 

The standard (or reference) skin friction drag coefficient is based upon the standard Reynolds 
number per foot and the characteristic length. Inserting these numbers into equation 18.4: 

 2.58
100.455 / log (1,800,000 25.794)fsC = ⋅ = 0.00238 (18.8) 

From a formula defined in the lift and drag section,  

 
( )

2

110
398.15
T

RNI δ
θ

 +  = ⋅   
  

 (18.9) 

 67.101 10RN M RNI l= ⋅ ⋅ ⋅ ⋅  
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Finally, the test values of corrected thrust are computed. Note a distinction between test 
values and test day, since the data points are still at standard day temperatures. We will take out 
the correction to a reference Reynolds number.  

 [ ]
2

/
0.000675

Dt
n t

C M SF δ ⋅ ⋅=  (18.10) 

18.1 Thrust Specific Fuel Consumption  

Next, we compute the thrust specific fuel consumption corrected as follows: 

 
( )

[ ]
/

/
/

f
t

C
n t

W
TSFC TSFC

F

δ θ
θ

δ

 ⋅ = =  (18.11) 

The following (Figure 18.2) is a plot of the 141 data points being analyzed. Even though the 
plot has no scales, it will however give you some interesting information. The maximum value of 
the dependent variable ( /tsfc θ ) is 11.2 percent greater than the mean and the minimum value 
if 17.9 percent less than the mean. The 1-sigma about the mean is  
7.0 percent. This is a large variation, however, it should be noted that range factor had a 14.3-
percent variation about its mean (more than twice as much – percentage wise). The use of these 
‘generalizing’ parameters is a good first step in modeling your data. That is analogous to drag 
where we use lift and drag coefficients to aid in modeling. We still wish to reduce this variation, 
so we proceed to curve fit the data using multiple regression.  
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Figure 18.2  Thrust Specific Fuel Consumption 
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18.2 Multiple Regression 

Now, we will strive to develop an equation that fits the data presented in Figure 18.2. The 
simplest possible equation is a constant. We will use Reynolds number index ( RNI ) as an 
altitude parameter. In general, the formula will be as follows: 

 ( )( )/ / , ,nTSFC f F M RNIθ δ=  (18.12) 

For ease of representation, we will make the following variable name changes: 

a. /Y TSFC θ= , 

b. 1 /nX F δ= , 

c. 2X M= , and 

d. 3X RNI= . 

Then, equivalently: 

 ( )1, 2, 3Y f X X X=  (18.13) 

The author used MS Excel  to evaluate the data. Excel has matrix operators, however it was 
necessary to develop a multiple regression method for use with Excel. For those who do not have 
a multiple regression program available, the following is the formulation for multiple regression.  

The general case for linear multiple regression: 

 0 1 1 2 2 m mY a a X a X a X= + ⋅ + ⋅ + + ⋅L  (18.14) 

The coefficients are solved by the following: 

 

1
1, 2, ,

0
2

1, 1, 2, 1, 1, , 1,1
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2
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i i i i i m i i i

i ii i i i i m i
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m i im i m i i m i i m i

N X X X Ya
X X X X X X X Ya

a X YX X X X X X

a X YX X X X X X

−
  

    
    ⋅ ⋅ ⋅
    
  = ⋅  ⋅⋅ ⋅ 
   
   
     ⋅⋅ ⋅   
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∑ ∑ ∑ ∑ ∑

∑∑ ∑ ∑ ∑
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L
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L







 
 
 
 

(18.15) 

where: 

N  = number of data points. 

The above general curve fit formula was developed by minimizing the sum of the squares of 
the residual errors ( SS ). The formula for SS  is as follows: 
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 ( )2ˆ
i iSS Y Y= −∑  (18.16) 

where: 

Ŷ  = the curve fit equation. 

There are a number of ways to evaluate the quality of a curve fit. We will look at the standard 
deviation.  

 /( 1)SS Nσ = −  (18.17) 

A percentage standard deviation will be calculated, 

 % ( / ) 100Yσ σ= ⋅  (18.18) 

where: 

Y  = the mean value of the independent variable. 

Here are the results of the curve fits: 

a. 0Ŷ a=  % 7.00%σ = , 

b. 0 1
ˆ 1Y a a X= + ⋅  % 5.30%σ = , and 

c. 2
0 1 2

ˆ 1 1Y a a X a X= + ⋅ + ⋅ % 5.16%σ = . 

At this point, we should pause to examine the residual errors rather than just blindly adding 
additional terms to the equation. From Figure 18.3, we can see some apparent additional Mach 
number and Reynolds number effects. So far, we have only reduced the  
1-sigma about the mean from 7.0 percent to 5.16 percent. This is a disappointing result; however, 
we suspect there may be a substantial altitude and Mach number effect. The parameter we will 
plot is the percentage error as follows: 

 ( )ˆ%
100
YError Y Y  = − ⋅ 

 
 (18.19) 

The Ŷ  used will be from the last curve fit (equation 18.18). 
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% Error in TSFC/sqrt(theta) Versus Mach Number
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Figure 18.3  Percentage Error in Thrust Specific Fuel Consumption 

We can now proceed to add additional terms to our model. 

a. 2
0 1 2 31 1 2Y a a X a X a X= + ⋅ + ⋅ + ⋅  % 1.237%σ = , 

b. 2
0 1 2 3 4

ˆ 1 1 2 3Y a a X a X a X a X= + ⋅ + ⋅ + ⋅ + ⋅  % 1.230%σ = , 

c. 2 2
0 1 2 3 4 5

ˆ 1 1 2 3 2Y a a X a X a X a X a X= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅  % 1.229%σ = , and 

d. 2 2 2
0 1 2 3 4 5 6

ˆ 1 1 2 3 2 3Y a a X a X a X a X a X a X= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅  % 1.224%σ = . 

At this point, no significant additional gains are evident. Actually, we did not make 
significant gains past equation (a) but proceeded just to illustrate what additional gains were 
made. This particular data set was not a very good one to develop a complete fuel flow model. 
There were no data collected below 6,000 feet pressure altitude, for instance. Only stabilized 
cruise data points were used. Throttle settings above and below that required for stabilized cruise 
should be included in any fuel flow model.  

The C-17A project (Reference 18.1) illustrates that too much time was expended collecting 
cruise data. Enormous quantities of flight time were expended to collect these relatively few 
cruise data points. The stabilization criterion was much too stringent. To quote from the report 
(Reference 18.1), “it was not uncommon for a single cruise point to take 20 minutes to 
complete.” They required “not less than 2.5 minutes of stabilized data” on each data point. There 
is no reason for that with the advent of INS and GPS measurements to give instantaneous 
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acceleration data. Once some reasonable stabilization is achieved, a few seconds of data is all that 
is required. With the addition of a series of accelerations and decelerations at partial thrust, a 
much more complete fuel flow model could have been obtained at a much lower cost in terms of 
flight time.  

To present just a few of the data points we choose to present those that illustrate an altitude 
effect. The data points are all from the aforementioned C-17 Cruise Performance report 
(Reference 18.1). Range factor variation with altitude is shown in Figure 18.4. 
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Figure 18.4  Range Factor Variation with Altitude 

The degradation factor of range factor with altitude was 0.20 percent per 1,000 feet at 
1,100,000 pounds /tW δ  and 0.26 percent per 1,000 feet at 1,800,000 pounds /tW δ . This is 
more than a factor of two less than the degradation factor of older generation aircraft such as B-
52 aircraft.  

SECTION 18.0 REFERENCE 

18.1 Weisenseel, Charles W. and Chester Gong, C-17 Cruise Configuration Performance 
Evaluation, AFFTC-TR-93-23, AFFTC, Edwards AFB, California, December 1993. 

 



19.0 EQUATIONS AND CONSTANTS 

This section is a summary of the primary equations and constants that were derived and used 
in this handbook. Except where indicated, distances in feet and weight in pounds. 

19.1 Equations 

Acceleration factor 
0

1 t t EV dV HAF
g dH H

    = + ⋅ =    
    

&

&
  

 
Aircraft geometric height (Edwards flyby tower) 31.422 (grid reading)towerh∆ = ⋅  
 

Aircraft pressure altitude (flyby tower data) /
std

C a c p tower tower
TH H h
T

 = + ∆ ⋅ 
 

 

 

Alpha transformation body to flight path  [ ]
cos 0 sin

0 1 0
sin 0 cos

α α
α

α α

 
 =  
 − 

 

Angle of attack ( )1tan bz bxV Vα −=  
 
Angle of attack (zero bank) α θ γ= −   
 
Angle of sideslip ( )1sin by tV Vβ −=  
 
Aspect ratio 

2bAR S=   

 

Beta transformation body to flight path[ ]
cos sin 0
sin cos 0
0 0 1

β β
β β β

 
 = − 
  

 

 

Body axis airspeeds [ ] [ ] [ ]
bx tN

T T T
by tE

bz tD

V V
V V
V V

φ θ ψ
   
   = ⋅ ⋅ ⋅   
   
   

 

 
Body axis pitch rate cos cos sinq θ φ ψ θ φ= ⋅ + ⋅ ⋅& &  
 
Body axis roll rate sinp φ ψ θ= − ⋅& &  
 
Body axis yaw rate cos cos sinr ψ θ φ θ φ= ⋅ ⋅ − ⋅&&  
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Calibrated airspeed ( )C SLV a<
3.52

1 0.2 1C C

SL SL

q V
P a

  = + ⋅ −    
 

 

Calibrated airspeed ( )C SLV a<
(1 3.5)

5 1 1C
C SL

SL

qV a P
    = ⋅ ⋅ + −       

 

 

Calibrated airspeed ( )C SLV a≥
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7
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166.9216
1

7 1

C SLC

SL
C SL

V aq
P

V a

⋅
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Calibrated airspeed ( )C SLV a≥
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2
10.881285 1 1

7

C
C SL

SL C

SL

qV a
P V

a

            = ⋅ ⋅ + ⋅ −          ⋅         

  

 
Cloverleaf method solves this equation 2 2 2( ) ( ) ( )ti t gN wN gE wEV V V V V V+ ∆ = + + +  
 

Compressible dynamic pressure( )1M < ( )3.521 0.2 1cq MP = + ⋅ −  

 

Compressible dynamic pressure ( 1)M ≥
( )

7
2.52

166.9216 1
7 1

Cq M
P M

 
 = ⋅ −
 ⋅ − 

 

 
Corrected net thrust /nF δ   

Corrected thrust specific fuel consumption 
( )

/

f

f

nn

W

W
tsfc

FF

δ θ
θ

θ
δ

 
 
 ⋅ = =

 ⋅  
 

 

Density altitude 
( )1

4.2559
1 / 6.87559 6dH Eδ

θ

   = − −    
  

 
Density ratio δσ θ=  

 
Drag (test day) t nt extD F F= −  
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Drag coefficient ( )/DC D q S= ⋅  
 
Drag coefficient ( )20.00067506DC D M Sδ= ⋅ ⋅ ⋅  (pounds, feet2) 

Drag Coefficient ( )20.000138263DC D M Sδ= ⋅ ⋅ ⋅  (Kgs, m2) 
 

Drag coefficient due to skin friction wet
D f

SC C
S

 = ⋅ 
 

 

 
Drag Model (given M ) ( ) ( )2 2

min min1 2D D L L L LbC C K C C K C C= + ⋅ − + ⋅ −      

    2 0K =  when L LbC C<  
 

Earth axis winds [ ] [ ] [ ] [ ] [ ] 0
0

wN t gN

wE gE

wD gD

V V V
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V V

ψ θ φ α β
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Elliptic Wing Theory (M <<1)
22
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L
L D

CC C
AR

AR

π α
π

⋅= ⋅ =
⋅ + 
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Energy altitude ( )
2

02
t

E
VH H g= + ⋅  

 

Energy per unit weight ( )
2

0
/ 2

t
t

t t

PE KE VE W H gW W
 = + = + ⋅ 

 

 
Equivalent airspeed e tV Vσ= ⋅   
 
Excess thrust ex x tF N W= ⋅  
 
Excess thrust [ cos( ) ]ex g t eF F i F Dα= ⋅ + − −  
 
Excess thrust test 

tex x tF N W= ⋅  
 

Flight path accelerations
cos sin 0 cos 0 sin
sin cos 0 0 1 0
0 0 1 sin 0 cos
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z bz

A A
A A
A A

β β α α
β β

α α

       
      = − ⋅ ⋅      
      −       

 

 



 223

Flight path accelerations [ ] [ ] [ ] [ ] [ ]
x N

T T T T T
y E

z D
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β α φ θ ψ
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Flight path angle 1sin
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Flight path load factors 
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Flight path to earth axis transform
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Fuel flow t
f

dWW
dt

 = − 
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Geopotential altitude 0g dh g dH⋅ = ⋅   
 

Geopotential vs. geometric altitude 
( )

0

0

rH h
r h

 
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Gross thrust ( ) ( )g a f exit exit exitF W W V A P P= + ⋅ + ⋅ −&  
 
Groundspeed east sin( )gE g gV V σ= ⋅  
 
Groundspeed north cos( )gN g gV V σ= ⋅  
 

Heading matrix (rotate about the z axis (or yaw))[ ]
cos sin 0
sin cos 0

0 0 1

ψ ψ
ψ ψ ψ

− 
 =  
  

 

 

Heating value corrected fuel flow 
18,400

test
ft ft

LHVW W  = ⋅ 
 

 

 
Ideal gas equation of state P R Tρ= ⋅ ⋅  
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Incompressible dynamic pressure 2 20.5 0.5t SL eq V Vρ ρ= ⋅ ⋅ = ⋅ ⋅  
 

Inverse square gravity law 
( )

2

0
0

0

rg g
r h

 
= ⋅ +  

 

 

Kinetic energy 2

0
0.5 t

t
WKE Vg
 = ⋅ ⋅ 
 

 

 

Laminar skin friction empirical formula 1.328
fC

RN
=  

 
Lateral load factor 0/y yN A g=  
 
Lift coefficient ( )/LC L q S= ⋅  
 
Lift coefficient ( )20.00067506LC L M Sδ= ⋅ ⋅ ⋅  (pounds, feet2) 

Lift coefficient ( )20.000138263LC L M Sδ= ⋅ ⋅ ⋅  (Kgf, m2) 
 
Longitudinal load factor 0x t tN H V V g= +& &  
 
Longitudinal load factor 0/x xN A g=  
 

Mach number tVM a=  

 

Mach number ( )1M ≥

2.5

2

10.881285 1 1
7

CqM P M

     = ⋅ + ⋅ −      ⋅    

 

 

Mach number ( )1M <  
[ ]1 3.5

5 1 1CqM P
    = ⋅ + −        

 

Mach number from equivalent airspeed ( )
e

SL

VM
a δ

=
⋅

 

 
Normal load factor 0/z zN A g= −  
 

Normal load factor in climb 
0

cos t
z

VN
g
γγ ⋅= +
&
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Normal load factor in turn (constant altitude, zero wind)
2

0

1 t
z

VN
g

σ
 

= + ⋅ 
 

&  

 
Normal load factor in turn (constant altitude, zero wind) 1

coszN φ=  

 
Normal load factor times weight sin( )z t g tN W L F iα⋅ = + ⋅ +  
 

Pitch matrix (rotate about y-axis) [ ]
cos 0 sin

0 1 0
sin 0 cos

θ θ
θ

θ θ

 
 =  
 − 

 

 
Potential energy tPE W H= ⋅  
 
Pressure altitude above 36,089 feet ( )36089.24 20805.84 ln 0.22336CH δ= − ⋅  

 

Pressure altitude below 36,089 feet 
( )( )

( )

1 5.25591

6.87559 6
H

E

δ − =
−

 

 
Pressure ratio 

SL

P
Pδ =  

 
Pressure ratio above 36,089 feet [ ] ( ){ }4.806343 5 36089.240.22336 CE Heδ − − ⋅ −= ⋅  
 
Pressure ratio below 36,089 feet ( )5.25591 6.87559 6E Hδ = − − ⋅  
 
Ram drag r a tF W V= ⋅&  
 

Range (approximate) ln ts

te

WR RF
W
 

= ⋅  
 

 

 

Range factor t
t t

f

VRF W SR W
W

= ⋅ = ⋅  
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Range for constant altitude (approximate)

( )

661.48 te

ts

t W

tW
f

WM dtR
WW

δ

δ θ

 ⋅ ⋅ 
 = −

 
 
 ⋅ 

∫  

 

Range for constant altitude (approximate)
te

ts

W

tW

dtR RF
W

= − ⋅ ∫  

 

Range for cruise at constant altitude

( )

661.48te

ts

tW

tW
f

WM dtR
WW

δ

δ θ

 ⋅ ⋅ 
 = − ⋅

 
 
 ⋅ 

∫  

 
Range for cruise at constant altitude tR V dt= ⋅∫  
 

Reynolds number tV lRN ρ
µ
⋅ ⋅=  

 
Reynolds number (7.101 6)RN E M l RNI= + ⋅ ⋅ ⋅  
 

Reynolds number index 
( )

2

110
398.15
T

RNI δ
θ

 +  = ⋅   
  

 

 

Roll matrix (rotate about x-axis) [ ]
1 0 0
0 cos sin
0 sin cos

φ φ φ
φ φ

 
 = − 
  

 

Sideslip matrix [ ]
cos sin 0
sin cos 0

0 0 1

β β
β β β

− 
 =  
  

 

 

Slender Body Theory ( )1M ≈
22

2 L

L
L D

CC AR C
AR

π α
π
⋅= ⋅ ⋅ =
⋅

 

 

Specific excess power ( )
0

t
s E t x t

VP H H V N Vg
  = = + ⋅ = ⋅    

& & &  

 

Specific range t

f

VSR
W

=  



 227

 
Speed of sound ( ) 661.48a R Tγ θ= ⋅ ⋅ = ⋅  
 

Standard day density ratio ( )4.25591 6.87559 6 CE Hδσ
θ

= = − − ⋅  

 
Standard temperature above 36,089 feet 0T  = 216.65 °K 
 
Standard temperature below 36,089 feet 288.15 1.9812 3 CT E H= − − ⋅  
 

Standardized drag ( )s t s tD D D D′ ′= + −  
 

Standardized excess thrust ( ) ( )
s tex ex ns s nt tF F F D F D′ ′ ′ ′= + − − −  

 
Standardized fuel flow ( )fs ft fs ftW W W W′ ′= + −  
 
Standardized net thrust ( )ns nt ns ntF F F F′ ′= + −  
 
Takeoff excess thrust ( )cos( ) sin( )ex t rw n t rwF W L F D Wµ θ θ+ ⋅ ⋅ − = − − ⋅  
 

Temperature correction to pressure altitude change C
STD

Th HT
 ∆ = ⋅∆ 
 

 

 

Temperature ratio 
288.15SL

T T
T

θ = =  

 

Theoretical tanker downwash angle 
( )
( )0

2 Lt

t

C
AR

ε
π
⋅

=
⋅

 

 

Thin Wing Theory (M > 1)
2

2

2

4 1
41 LL D L L

MC C C C
M
α α⋅ −= = ⋅ = ⋅
−

 

 

Thrust horsepower 
550
n tF VTHP ⋅=  (where tV  has units of feet/sec) 

 
Thrust horsepower (user provided  and nη ) ( )nTHP BHPη σ= ⋅ ⋅  
 
Total energy E KE PE= +  
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Total temperature ( )21 0.2tT T M= ⋅ + ⋅  
 

True airspeed ( )2 2 2
t bx by bzV V V V= + +  

 
True airspeed down tD gD wDV V V= +  
 
True airspeed east tE gE wEV V V= +  
 

True airspeed magnitude ( )2 2 2
t tN tE tDV V V V= + +   

 
True airspeed north tN gN wNV V V= +  
 
True airspeed vector t g wV V V= +

r r r
 

 

True airspeed vector [ ] [ ] [ ] [ ] [ ]0
0

t tN
T T T T T

tE

tD

V V
V
V

β α φ θ ψ
   
   = ⋅ ⋅ ⋅ ⋅ ⋅   
   
   

 

 

Turbulent skin friction empirical formula 2.58
10

0.455
(log )fC

RN
=  

 

Turn radius (constant altitude, zero wind)
( )

2

2
0 1

t

z

VR
g N

=
⋅ −

 

 

Turn radius (constant altitude, zero wind) t
g

V
Rσ =&  

 

Velocity rate corrections
0

0
0

i

i

i

bx bx x

by by y

bz bz z

V V r q l
V V r p l
V V q p l

  −     
     = + − ⋅      

      −      

 

 
Weight 0tW m g= ⋅  
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19.2 Constants 

Conversion feet to meters = multiply feet by 0.3048 (exactly) 
 
Conversion knots to feet/sec = multiply knots by 1.68781 
 
Conversion pounds to kilograms = divide pounds by 0.45359237 (exactly) 
 
Nautical mile ( NM ) = 1,852 meters 
     =  6,076.1155 feet 
 
Reference gravity ( 0g ) = 32.17405 feet/sec² 

Reference radius of the earth ( 0r ) (from the 1976 U.S. Standard Atmosphere) = 20,855,553 feet 
 
Sea level standard temperature ( SLT ) = 288.15 °K 
 
Speed of sound at sea level standard day ( SLa ) = 1,116.4505 feet/sec 

                                    = 661.4788 knots 
 
Standard sea level pressure ( SLP ) = 101,325 pascals (newtons/m2) 

              = 2,116.2166 pounds/feet²  
 
Temperature in second segment of standard atmosphere ( 0T ) = 216.65 °K 
 
Universal gas constant ( R ) 3,089.8136 feet²/(sec²°K) 
 
Viscosity at sea level ( SLµ ) = 3.7373⋅10-7 slugs/(feet sec) 
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APPENDIX A 
 

AVERAGE WINDS AND TEMPERATURES FOR  
THE AIR FORCE FLIGHT TEST CENTER 
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AVERAGE WINDS AND TEMPERATURES FOR  
THE AIR FORCE FLIGHT TEST CENTER 

The following average wind and temperature data were provided courtesy of the Edwards 
AFB weather squadron. The data represents average values obtained on a daily basis over a 
period of more than 30 years (1950s through 1980s). Figures A1 through A5 represent average 
temperature deviation data versus month for 10, 20, 30, 40, and 50,000 feet pressure altitude, 
respectively.  

Temperature from Standard: Pressure Altitude = 10,000 Feet; AFFTC Average 
Data; Temperature Standard = 268.34 deg K
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Figure A1  Delta Temperature at 10,000 Feet  

Temperature from Standard: Pressure Altitude = 20,000 Feet; Average AFFTC 
Data; Standard Temperature = 248.53 deg K
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Figure A2  Delta Temperature at 20,000 Feet 
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Temperature From Standard: Pressure Altitude = 30,000 Feet; Average AFFTC 
Data; Temperature Standard = 228.71 Deg K
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Figure A3  Delta Temperature at 30,000 Feet 

Temperature from Standard: Pressure Altitude = 40,000 Feet: AFFTC average 
data; Standard Temperature = 216.65 deg K
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Figure A4  Delta Temperature at 40,000 Feet 
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Temperature from  Standard: Pressure Altitude = 50,000 Feet : AFFTC Average 
data; Standard Tem perature = 216.65 deg K
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Figure A5  Delta Temperature at 50,000 Feet 

Figures A6 and A7 present average wind speed and direction versus month.  They are 
presented at three different ambient pressure levels. These are in terms of pressures in millibar 
(mb). The following are the corresponding pressure altitudes: 

1. 200 mb = 38,661 feet, 

2. 400 mb = 23,574 feet, and 

3. 600 mb = 13,801 feet. 

Wind Direction versus Month
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Figure A6  Wind Direction 
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Windspeed versus Month
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Figure A7  Wind speed 

On a given day, the geometric height will not be equal to the pressure altitude. Figure A8 
illustrates this difference for an average day above Edwards AFB.  As can be seen, the geometric 
height (on average) is always greater than the pressure altitude. This is due to the fact (again on 
average) that the atmospheric temperature is greater than standard day for all months of the year 
through 30,000 feet.  

Geometric Height - Pressure Altitude versus M onth
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Figure A8  Geometric Height minus Pressure Altitude 
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APPENDIX B 
 

WEATHER TIME HISTORIES 
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WEATHER TIME HISTORIES 

The following charts represent time histories of data for September through October 
1998. On the charts, the terminology flight level (FL) is used. Flight level is pressure altitude 
in feet divided by 100. Figure B1 shows the variation of delta temperature above standard 
versus date.  

Delta Temperature versus Date
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Note: /100CFL H=  

Figure B1  Delta Temperature Time History 

Figures B2 and B3 illustrate the variation in wind speed and direction versus date at flight 
levels of 100, 200, 300 and 400, respectively.  
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Wind Direction versus Date
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Figure B2  Wind Direction Time History 

Wind Speed versus Date
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Figure B3  Wind speed Time History 
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APPENDIX C 
 

AVERAGE SURFACE WEATHER FOR  
THE AIR FORCE FLIGHT TEST CENTER 



 242

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 243

AVERAGE SURFACE WEATHER FOR  
THE AIR FORCE FLIGHT TEST CENTER 

Figure C1 shows the average surface temperature for the Air Force Flight Test Center. 

Average Surface Temperatures

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

T
em

p
er

at
ur

e 
(d

eg
 F

)

Maximum
Minimum

 
Figure C1  Average Maximum and Minimum Surface Temperatures 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS  

Abbreviation Definition Unit

ADC air data computer ---

AF acceleration factor ---

AFB Air Force Base ---

AFFTC Air Force Flight Test Center ---

AGL above ground level ft

AIAA American Institute of Aeronautics and Astronautics ---

AOA angle of attack deg

AOSS angle of sideslip deg

A  acceleration ft/sec²

AF  acceleration factor ---

AR  aspect ratio dimensionless

tAR  aspect ratio of tanker dimensionless

DA  acceleration in the down direction ft/sec2

EA  acceleration in the east direction ft/sec2

NA  acceleration in the north direction ft/sec2

bxA  X axis body acceleration ft/sec2

byA  Y-axis body acceleration ft/sec2

bzA  Z-axis body acceleration ft/sec2

xA  flight path longitudinal acceleration ft/sec2

xA  longitudinal acceleration ft/sec²

yA  flight path lateral acceleration ft/sec2

yA  lateral acceleration ft/sec2

zA  flight path normal acceleration ft/sec2

zA  normal acceleration (positive down) ft/sec2

a  acceleration ft/sec2

a  speed of sound kts
Note: 
1. Velocity units in knots or feet per second. 
2. Time in units of seconds or hours. 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued)  

Abbreviation Definition Unit

a  temperature gradient °K/1,000 ft
a  mean (average) acceleration ft/sec2

SLa  speed of sound standard day sea level 1116.45 ft/sec; 
661.48 kts

α  angle of attack deg

/A Cα  angle of attack from the aircraft system deg

INSα  angle of attack computed from INS data deg

BAA body axis accelerometer ---

Btu British thermal unit ---

BHP  brake horsepower HP

b  wingspan ft

C Celsius deg

DC  drag coefficient dimensionless

minDC  minimum drag coefficient ---

LC  lift coefficient dimensionless

LbC  break lift coefficient dimensionless

minLC  lift coefficient at the minimum drag coefficient dimensionless

LtC  tanker lift coefficient dimensionless

fcC  compressible skin friction drag coefficient dimensionless

fiC  incompressible skin friction drag coefficient dimensionless

cg  center of gravity pct MAC

cg center of gravity pct MAC

cm centimeters ---

DGPS differential GPS ---

D  down ---

D  drag pounds

bwD  drag of the aircraft body and wind pounds
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit

sD  standard day drag pounds

tD  drag of the aircraft tail pounds

tD  test day computed drag pounds

sD′  standard day predicted drag pounds

tD′  test day predicted drag pounds

d  distance ft

tdV  change in true airspeed ---

tdW  weight increment pounds

dh  change in altitude ft

dt  time increment sec 

dB decibels ---

deg degrees (either temperature or angle) ---

E east ---

EGI embedded GPS/INS ---

E  east ---

E  energy ft-pounds

F Fahrenheit deg

FL flight level  (ft/100)

FPA flight path accelerometer ---

F  Fahrenheit deg
*F  summation parameter to be minimized ---

eF  propulsive drag pounds

exF  excess thrust pounds

gF  gross thrust pounds

nF  net thrust pounds

nrF  referred net thrust pounds
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit

0nF  net thrust at zero speed pounds

/nF δ  corrected net thrust pounds

0/n tF δ  referred net thrust pounds

2/n tF δ  referred (inlet) net thrust pounds

nsF  standard day net thrust pounds

nsF ′  standard day predicted net thrust pounds

nslopeF  slope of thrust versus Mach pounds

ntF  test day net thrust pounds

ntF ′  test day predicted net thrust pounds

rF  ram drag pounds

rwF  runway resistance force pounds

tsfcrF  degradation factor for tsfcr  ---

1F  nose gear load pounds

2F  main gear load pounds

ft foot ---

GPS Global Positioning System ---
g  acceleration of gravity ft/sec2

0g  reference acceleration due to gravity 32.17405 ft/sec²

HUD head-up display ---

Hg mercury ---

Hz Hertz cycles per second

H  geopotential altitude ft

H&  rate of change of geopotential height ft/sec

CH  pressure altitude ft

EH  energy altitude ft
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit

dH  density altitude ft

0H  base geopotential altitude ft

h  tapeline (or geometric) altitude ft

h&  rate of change of geometric height ft/sec

AGLh  height above ground level ft

wh  height of wing above ground ft

ICAO International Civil Aviation Organization ---

INS inertial navigation system ---

In inches ---

IHP  indicated horsepower HP
i  point number ---

ti  thrust incidence angle deg

j  iteration number ---

K kelvin ---

K ft thousand ft 1,000 ft

K  Kelvin deg K

KE  kinetic energy ft-pounds

1K  parabolic coefficient of the drag polar dimensionless

2K  nonlinear coefficient of the drag polar dimensionless

kg kilogram ---

km kilometers ---

kt knot(s) ---

LHV lower heating value Btu

L  lift pounds

1L  lift of the wing pounds

2L  lift of the tail pounds

l  characteristic length (in Reynolds number 
formula) 

ft
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit 

xl  longitudinal (x) distance from cg ft

yl  lateral (y) distance from cg ft

yyI  moment of inertia about the y-body axis ft-pounds/sec

zl  normal (z) distance from cg ft

MAC mean aerodynamic chord ---

MAX maximum rated thrust ---

METO maximum except for takeoff ---

MIL Military rated thrust ---

M  Mach number dimensionless

M  moment ft-pound
m  mass slugs

m meter ---

mbar millibar ---

N north ---

N/A not applicable ---

NACA National Advisory Committee for Aeronautics ---

NASA National Aeronautics and Space Administration ---

NBIU Nose Boom Instrumentation Unit ---

NTPS National Test Pilot School ---

n/d nondimensional ---

nam nautical air miles ---

nm nautical mile ---

N  north ---

N  number of points in multiple regression ---

xN  longitudinal load factor g’s

yN  lateral load factor g’s

zN  normal load factor (positive up) g’s

η  propeller efficiency dimensionless
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit 
η  temperature probe recovery factor dimensionless

tη  inlet pressure recovery factor dimensionless

P  ambient (static) pressure pounds/ft2

PE  potential energy ft-pounds

SLP  ambient pressure sea level 2,116.2166 pounds/ft²

aP  ambient  pressure pounds/ft2

sP  specific excess power ft/sec

tP  total pressure pounds/ft2

tP′  
total pressure behind a shock pounds/ft²

p  roll rate deg/sec

pph pounds per hour ---
q  pitch rate deg/sec
q  incompressible dynamic pressure pounds/ft²

Cq  compressible dynamic pressure pounds/ft²

R radius of a pullup ft

RMS root mean square ---

R  radius of turn or pullup ft

R  universal gas constant for air 3,089.8136 ft²/sec² °K

R  range nam

/R C  rate of change of pressure altitude ft/sec

RF  range factor nm

RN  Reynolds number dimensionless

RNI  Reynolds number index dimensionless

r  yaw rate deg/sec

0r  reference radius of the earth 20,855,553 ft

S south ---
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

 Abbreviation Definition Unit 

SFTE Society of Flight Test Engineers ---

STOL short takeoff and landing ---

S  reference wing area ft²

SR  specific range nm/pounds

SS  sum of squares ---

0tδ  referred pressure ratio dimensionless

2tδ  referred inlet pressure ratio dimensionless

2tδ  total pressure ratio dimensionless

wetS  wetted area ft2

sec seconds ---

TPS Test Pilot School ---

T  temperature °K

THP  thrust horsepower HP

TSFC  thrust specific fuel consumption pound/hr/pound

SLT  sea level standard temperature 288.15 °K

aT  ambient temperature (T  = interchangeable 
symbology) 

°K

asT  ambient temperature °K

tT  total  temperature K°

0T  base temperature ºK

t  time sec

tsfc  thrust specific fuel consumption pound/hr/pound

tsfcc  corrected thrust specific fuel consumption dimensionless

tsfcr  referred thrust specific fuel consumption pound/hr/pound

USAF United States Air Force ---

cgU  X-body axis true airspeed kts

VSTOL vertical or short takeoff and landing ---
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit 

V&  rate of change of inertial velocity (ft/sec)/sec

CV  calibrated airspeed kts

DV   down (z) inertial speed kts

EV  east (y) inertial (ground) speed kts

NV  north (x) inertial speed kts

bxV  longitudinal (x-body) axis airspeed kts

byV  lateral (y-body) axis airspeed kts

bzV  vertical (z-body) axis airspeed kts

cgV  Y-body axis true airspeed kts

eV  equivalent airspeed kts

gV  groundspeed (usually horizontal component of 
vector) 

kts

gV
r

 groundspeed vector kts

tV∆  correction to be added to true airspeed kts

tV&  rate of change of true airspeed ft/sec2

tV  true airspeed kts

tDV  true airspeed down kts

tEV  true airspeed east kts

tNV  true airspeed north kts

tV
r

 true airspeed vector kts

tiV  indicated true airspeed kts

vV  vertical component of groundspeed vector kts

wV  wind speed ft/sec

wV
r

 wind speed vector kts
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit 

wDV  down (z) wind speed kts

wEV  east (y) wind speed kts

wNV  north (x) wind speed kts

W west ---

W  weight of an element of air pounds

ZfW  zero fuel weight pounds

aW&  airflow pounds/sec

cgW  Z-body axis true airspeed ft/sec2

fW  fuel flow pounds/hr

( )/fW δ θ⋅  corrected fuel flow pounds/hr

fsW  standard day fuel flow pounds/hr

fsW ′  standard day predicted fuel flow pounds/hr

ftW ′  test day predicted fuel flow pounds/hr

tW  weight pounds

/tW δ  weight over pressure ratio pounds

teW  end gross weight pounds

tsW  start gross weight pounds

wrt  with respect to ---

 X independent variable ---

1XL  distance from cg to wing center of lift ft

2XL  distance from cg to tail center of lift ft

FnX  distance main gear to thrust vector ft

GEX  ground effect factor ---

1X  distance from nose gear to cg ft
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit 

2X  distance from main gear to cg ft

x  the x unknown = wxV  kts

Y dependent variable ---

Ŷ  curve fit equation ---

y  the y unknown = wyV  kts

1Z  height of the body axis above ground ft

2Z  height of the tail center of lift and drag 
above body axis 

ft

z  the z unknown = tV∆  kts

Symbol  

σ  ambient density ratio dimensionless

σ  standard deviation ---

β  sideslip angle deg

∂  partial derivative symbol ---

θ  pitch attitude deg

θ  ambient temperature ratio dimensionless

Vθ  thrust vector angle deg

rwθ  runway slope deg

2tθ  total temperature ratio dimensionless

δ  ambient pressure ratio dimensionless

µ  viscosity slugs/ft sec
µ  runway coefficient of friction dimensionless
µ  coefficient of friction dimensionless

SLµ  viscosity at sea level slugs/ft sec

ϖ  angular rate of a pullup deg/sec
γ  flight path angle deg
γ  ratio of specific heats dimensionless
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Concluded) 

Symbol  

0γ  gravity at sea level (function of latitude) cm/sec2

φ  bank angle deg

º degrees temperature or angle

λ  engine losses factor ---
ψ   heading angle (degrees from true north) deg

∆  increment ---

∫  integral ---

ϕ  latitude deg

φ  roll attitude deg

∑  summation ---

0ε  theoretical downwash angle deg

τ  thrust increase time constant sec

gσ  track angle deg from true north
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INDEX 

1976 U.S. Standard Atmosphere, 15, 16, 22, 
31, 40, 174, 180 

A 
Accelerating or decelerating turns, 155 
acceleration, 1 
Accelerometer 

accelerometer noise, accelerometer rate 
corrections, 58, 60, 72 

Aerobraking, 106, 112, 113 
Airspeed, 12, 26, 30, 32, 35, 36, 37, 38, 83, 

96, 100, 101, 104, 106, 111, 113, 116, 131, 
134, 140, 150, 178, 246 

Altitude 
Constant altitude, Energy altitude, 13, 15, 

17, 18, 23, 24, 25, 26, 28, 42, 55, 114, 
120, 121, 134, 136, 140, 141, 166, 170, 
171, 178, 201, 202, 219, 236, 246, 251 

Ambient pressure, 82 
Angle of attack, 67 
Atmosphere, 17, 23, 40, 245 

B 
Braking 

braking coefficient, braking forces, 3, 103, 
106, 113 

Butterworth filter 
Four-pole Butterworth filter, 61, 63 

C 
Calibrated airspeed, 30, 83 
Climb, 3, 144, 145, 146, 147, 149, 152, 181, 

245 
Cruise tests, 136 

D 
Deceleration, 3, 104, 154, 181 
Density, 13, 26 
Density altitude, 13, 26 
Descent, 3, 108, 154, 181 
Differential GPS, 121 
Differential pressure, 33 
Drag, 2, 4, 40, 41, 43, 44, 45, 46, 80, 81, 97, 

98, 108, 111, 112, 113, 165, 169, 184, 185, 
186, 188, 189, 190, 191, 192, 206, 207 

Drag coefficient, 81 

Drag due to lift, 184 
Dynamic performance, 164 

E 
EGI, 114, 160, 179 
Energy 

kinetic energy, potential energy, 140 
Equivalent airspeed, 37 
Euler angles, 66, 73, 160 
Excess thrust, 3, 57, 181, 182 

F 
Fuel flow, 4, 180, 182 

G 
Geometric altitude, 13 
Geopotential altitude, 15 
GPS, 2, 26, 30, 57, 58, 114, 115, 116, 122, 

124, 125, 128, 129, 132, 134, 160, 218, 
246, 250, 251 

Gravity, 173 
Groundspeed, 30, 129 

I 
INS, 26, 30, 58, 66, 71, 112, 114, 135, 136, 

144, 146, 154, 156, 158, 160, 168, 172, 
176, 218, 245, 250, 251 

Instrumentation, 1, 2, 60, 245, 246, 254 

L 
Landing, 3, 75, 76, 103, 107, 109, 113, 245 
Latitude, 174 
Lift, 2, 4, 5, 40, 41, 44, 47, 82, 83, 84, 87, 94, 

95, 97, 102, 108, 113, 189, 190 
Lift coefficient, 82 

M 
Mach number, 4, 30, 32, 33, 35, 39, 41, 42, 

43, 45, 47, 52, 80, 81, 111, 116, 122, 126, 
129, 135, 136, 140, 141, 142, 144, 145, 
148, 151, 152, 155, 156, 164, 165, 167, 
168, 172, 175, 177, 178, 184, 185, 186, 
187, 188, 189, 191, 192, 194, 195, 197, 
200, 202, 203, 206, 209, 217, 254 
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Maximum thrust, 54 
Military thrust, 208 
Minimum drag coefficient, 103 

N 
NBIU (Nose Boom Instrumentation Unit), 59 
Noise, 60 
normal load factor, 152 

P 
Pitot tube, 33 
Pressure altitude, 21 
Pressure ratio, 213 
Pullup, 170, 171, 172 

R 
Radar, 127, 134 
Ram drag, 50 
Range, 135, 136, 139, 140, 141, 142, 200, 

201, 202, 203, 219 
Range factor, 135, 140, 219 
Range mission, 141 
Rate corrections, 73 
Refueling, 176 
Reynolds number, 41, 42, 43, 80, 188, 194, 

195, 199, 201, 202, 203, 213, 214, 215, 
216, 217, 253, 255 

Reynolds number index, 42, 194, 203, 216, 
255 

S 
Skin friction drag coefficient, 188 
Split-S, 167, 169, 170, 172 
Standard atmosphere, 85 
Standard day, 25 
Standardization, 180, 183, 245 

T 
Takeoff, 3, 75, 76, 78, 86, 88, 97, 98, 99, 100, 

101, 102, 113, 245, 246 
Thrust, 2, 3, 6, 49, 50, 51, 53, 54, 81, 88, 92, 

93, 102, 140, 145, 148, 193, 194, 195, 196, 
197, 198, 204, 205, 206, 207, 208, 210, 
211, 215, 218 

Thrust runs, 81 
Thrust specific fuel consumption, 193 
Total pressure, 1 
Total temperature, 1 
True airspeed, 1, 30, 32, 125, 178 
Turns, 155, 156 

W 
Weather, 117, 237, 239, 241, 243 
Wind speed, 25, 30, 236, 240 
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